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Various topics concerning the entanglement of composite quantum systems are
considered with particular emphasis concerning the strict relations of such a
problem with the one of attributing objective properties to the constituents.
Most of the paper deals with composite systems in pure states. After a detailed
discussion and a precise formal analysis of the case of systems of distinguishable
particles, the problems of entanglement and the one of the properties of subsys-
tems of systems of identical particles are thoroughly discussed. This part is the
most interesting and new and it focuses in all details various subtle questions
which have never been adequately discussed in the literature. Some inappropri-
ate assertions which appeared in recent papers are analyzed. The relations of the
main subject of the paper with the nonlocal aspects of quantum mechanics, as
well as with the possibility of deriving Bell’s inequality are also considered.
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1. INTRODUCTION

One of the crucial points of any theory aiming to account for natural phe-
nomena concerns the possibility of identifying the properties objectively
possessed by individual physical systems and/or by their constituents. Such
a problem acquires a completely different status within different theoretical
schemes, typically in the classical and quantum cases. First of all, quantum
mechanics, if the completeness assumption is made, requires a radical
change of attitude about the problem of attributing objective properties to
physical systems due to its fundamentally probabilistic character. Secondly,



and even more important for our analysis, it gives rise to specific and
puzzling situations concerning the properties of the constituents of a com-
posite system due to its peculiar feature, Entanglement—the direct English
translation of the original German formVerschrankung used by Schrödinger(1)

—which Schrödinger himself considered ‘‘the characteristic trait of
Quantum Mechanics, the one that enforces its entire departure from classical
line of thoughts.’’

This paper is devoted to analyze quantum entanglement, to charac-
terize it in a clear and rigorous way, to derive various new theorems allow-
ing to identify its occurrence and to point out some misleading and/or
erroneous arguments about it which can be found in the literature. Partic-
ular emphasis is given to the conceptual and formal changes which are
necessary to deal in a logically correct way with the problem of entangle-
ment of systems involving identical constituents.

The paper is divided in four parts and is organized as follows: in Part I
the possible probabilistic features of various (classical and quantum)
theories are discussed with the purpose of illustrating the interplay between
the epistemic and nonepistemic aspects of the description of natural pro-
cesses and of characterizing the different types of ‘‘states’’ which one has to
take into account according to the information he has about the system.
The problem of the attribution of objective properties to individual physi-
cal systems in the classical and quantum cases is also discussed. The rest of
the paper is entirely devoted to quantum systems. In Parts II and III the
most extended and relevant, we investigate the implications of entangle-
ment of composite quantum systems concerning properties, by confining
our considerations to systems in pure states, or, equivalently, to homoge-
neous quantum ensembles. Part II deals with the case of distinguishable
constituents, while Part III is entirely devoted to present a detailed and
original analysis of the case involving identical constituents. In Part IV we
take briefly into account the non-pure cases, or, equivalently, the non-
homogeneous quantum ensembles, and we discuss some relevant questions
connected with quantum nonlocality and Bell’s inequality.

PART I. PROBABILITIES AND PROPERTIES

2. PHYSICAL THEORIES AND THEIR PROBABILISTIC FEATURES

Any theoretical scheme aiming to account for natural processes
describes the state of individual physical systems and the physically
observable quantities by appropriate mathematical entities. The scheme
must contemplate rules mirroring the crucial steps of the unfolding of a
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process: the preparation of the system, its evolution and the recipes by
which one can make predictions concerning the outcomes of prospective
measurement processes on the system. All the just mentioned stages can
exhibit deterministic or probabilistic aspects. In the case in which one has
to resort (for various reasons which we will analyze in what follows) to a
probabilistic description, one is naturally led to raise the conceptually
relevant question of the precise status assigned to probabilities within the
scheme, in particular whether they have an epistemic or nonepistemic
character. Obviously, answering such a question requires a specific analysis
of the logical and formal structure of the theory. In fact it is quite easy to
exhibit physically equivalent theoretical schemes (one of the best known
examples being Bohmian Mechanics and Standard Quantum Mechanics)
whose probabilities have a completely different conceptual status.

Let us therefore start by discussing the notion of state of an individual
physical system within the hypothetical theory under consideration. The
crucial point, from a conceptual point of view, consists in identifying which
is the most accurate characterization that the theory allows concerning the
situation of an individual physical system. By taking this attitude, we are
disregarding (for the moment) the unavoidable difficulties one meets in
actually preparing a system in such a way that its physical situation corre-
sponds to the just mentioned most accurate specification allowed by the
formalism, and/or in knowing precisely its situation at a given time. For
our present purposes we assume that such a ‘‘most accurate preparation’’
or ‘‘most exhaustive knowledge’’ is, in principle, possible. Such a charac-
terization is expressed by mathematical entities which we will denote as the
States (with capital S) of the theory. As the reader certainly knows, the
problem we are facing is strictly related to the so called assumption of
completeness of the theoretical framework: such an assumption amounts
simply to accept that no specification more precise than the one given by
the States is possible.

One can immediately exhibit some elementary examples of what we
have in mind. For instance, the States of a system of N point particles
within Newtonian mechanics are the points P of the 6N-dimensional phase
space of the system. Similarly, non-relativistic quantum mechanics with the
completeness assumption asserts that the States of a system of N spinless
particles are the state vectors of the associated Hilbert space, i.e., the
square integrable functions Y(r1,..., rN) of the 3N coordinates of the
particles.

As already remarked it can very well happen that one is not able to
prepare a system in a precise State or to have a precise knowledge of it.
This impossibility may derive from practical limitations but it can also
occur for reasons inherent to the theory itself. When we do not know the
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State, but we still have some control on the preparation or some meaning-
ful information about the physical situation, we will speak of the state
(with lower case s) of the physical system.3 Once more simple cases can be

3 Typically a state can be identified with a probability measure on the ensemble of States.

mentioned: for a mechanical classical system we can (in practice) know at
most its state and never its State, this fact being due to the practical
impossibility of identifying with infinite precision the point in phase space
characterizing the precise physical situation of the system. Within Bohmian
Mechanics, in spite of the fact that the most accurate specification of an
individual physical system is given by the combined assignment of its wave
function Y(r1,..., rN) plus the positions (r1,..., rN) of its particles, it is
usually assumed that while we can prepare a system in any chosen state
vector, there is no possibility of controlling or knowing the positions of the
particles in more detail than is conveyed by the quantum position proba-
bilities.4 We remark that, as is well known, if one could control the posi-

4 For a detailed discussion about the conceptual status of this assumption see the analysis
of ref. 2.

tions (which are often called—absurdly, according to Bell—the hidden
variables of the theory) one would be able to falsify quantum mechanics as
well as achieve superluminal signaling.

Having clarified this point, let us come back to our general theoretical
scheme and let us confine, for the moment, our considerations to the case
in which our physical system is in a precise State. As already stated,
a satisfactory theory must contain some recipe (usually an evolution equa-
tion) allowing to deduce from the knowlegde of the State S(0) at the initial
time, some meaningful information about the physical situation at later
times. Once more, the evolution may be deterministic or stochastic; in the
first case it is a mapping of the set of the States into (or onto) itself, in the
second case it is a mapping from the set of States to the set of states. Since
we are interested in discussing the cases of standard quantum mechanics
and of classical mechanics, we will assume that the evolution is perfectly
deterministic and reversible, i.e., it is an injective and surjective mapping of
the set of the States onto itself.

At this point we are led to analyze the last and essential feature of the
theory, i.e., its allowing to make predictions about the outcomes of pros-
pective measurements of physical observables. The question should be clear:
we assume that we know the State S(t) (i.e., the most accurate specification
which the theory makes legitimate concerning an individual physical
system) at a given time t, and we are interested in what the theory tells us
about the outcomes of measurement procedures concerning all conceivable
observable quantities at the considered time. Once more the predictions of
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the theory can have a deterministic or a probabilistic character, the two
paradigmatic cases being classical and quantum mechanics.

In classical mechanics the observable quantities are functions of the
State, i.e., of the point in phase space associated to the precise physical
situation we are considering. Let us denote as F(ri, pi) a generic observ-
able. Such a quantity takes a precise value at time t, which is simply given
by F(ri(t), pi(t)). Accordingly, classical mechanics is a deterministic theory
at its fundamental level, i.e., when analyzed in terms of its States.
Obviously, probabilities can enter into play also within such a theory; as
already mentioned this happens when we are not dealing with the States
but with the states of the theory. However, the need to pass from the States
to the states corresponds, for the considered case, to a lack of information
about the system with respect to the one that the theory considers in prin-
ciple possible: this allows to conclude that the probabilities of classical
mechanics (and in particular the practically unavoidable ones of classical
statistical mechanics) have an epistemic status, i.e., they are due to our
ignorance about the physical system under consideration.

The situation in quantum mechanics is quite different. First of all, even
when we deal with the States (i.e., with the so called pure cases in which
we know precisely the state vector of the system) the theory attaches (in
general) probabilities different from 0 and 1 to the outcomes of measure-
ments concerning almost all physical observables F, which, as is well known,
are represented by self-adjoint operators F1. This means that, when the
completeness assumption is made, quantum probabilities have a nonepis-
temic status. However, it is useful to remark that for any given state vector
(a State in our language) there is always one (actually infinitely many) self-
adjoint operator such that the considered state vector is an eigenstate of it
belonging to an appropriate eigenvalue. For such an observable the theory
attaches probability 1 to the outcome corresponding to the eigenvalue in a
measurement of the related observable, so that one can predict with cer-
tainty the outcome. Even more: the formalism tells us that for a system in a
pure state there are complete sets of commuting observables such that the
state vector is a simultaneous eigenstate of all of them.5

5 To be more precise, given any complete set of commuting observables such that all its
members commute with the projection operator on the one-dimensional manifold spanned by
the state vector, the state vector itself is a common eigenvector of the considered complete set
of observables. Accordingly, in the case under consideration there are various complete sets of
observables such that the theory attaches probability 1 to a corresponding specific set of
eigenvalues for each set.

When, within a quantum scheme, one passes from the consideration of
the States to that of the states, the situation becomes richer and deserves
further comments. In fact, two conceptually different situations can occur,
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depending on the information one has about the system (or the inhomo-
geneous ensemble) associated to a state.

In the first case one knows the precise probabilities pi of the system
being in the State |fiP, or, equivalently, the precise fractions pi of the
members of the ensemble which are in the considered state |fiP. Then an
interplay between epistemic and nonepistemic probabilities occurs: if we are
interested in a specific observable G, in order to evaluate the probability of
getting the outcome gk in a measurement we have to argue as follows.
There is an epistemic probability pi that my system (or the individual which
is picked up from the ensemble) is described by the pure state |fiP, and
such a state attaches (in general) a nonepistemic probability, let us say pi, k
to the outcome gk. It has to be remarked that if one takes such an attitude
(i.e., he knows that the system can be only in one of the state vectors |fiP
but he does not know precisely which one) it remains true that for each
such state there are precise observables (different for different values of the
index i) which have probability one of giving appropriate outcomes. This
remark is relevant for the problem of identifying the properties which can
be considered as objectively possessed by individual physical systems. As it
is well known, the consideration of the statistical operator r (a trace class,
trace one, semipositive definite operator) is the mathematically appropriate
entity to deal with the states of the system (or of the ensemble). For the
case considered above, it has the expression6 r=;r pr |frPOfr |.

6 It goes without saying that also in the case of a State one can resort to the statistical opera-
tor formalism. In the considered case the statistical operator turns out to be the projection
operator on the one-dimensional manifold spanned by the state vector and, as such, it satis-
fies the condition r2=r.

In the second case one knows the statistical operator but one is igno-
rant about the precise composition of the ensemble associated to the state
under consideration. We stress the conceptual relevance of making the just
mentioned distinction between the two above cases. It derives from the precise
formal fact that, while in classical mechanics non-pure states (i.e., states in our
language) are in one-to-one correspondence with statistical ensembles, in
quantum mechanics this is by no means true; actually the correspondence
between statistical ensembles and statistical operators is infinitely many to
one. To give just an elementary example, we can mention the case of an
ensemble which is the union of two subensembles which are pure cases asso-
ciated to the orthogonal states |j1P and |j2P, with weights p1 and p2, respec-
tively, and suppose p1 > p2. The statistical operator can be written

r=p1 |j1POj1 |+p2 |j2POj2 |

— p2[|j1POj1 |+|j2POj2 |]+(p1−p2)|j1POj1 | (2.1)
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One can then notice that in the second expression for r the number
p2 multiplies the projection operator on the two dimensional manifold
spanned by the set {|j1P, |j2P}. Such a projection can be written in terms
of any pair of orthogonal vectors |m1P, |m2P, spanning the same manifold,
so that r can also be written as:

r=(p1−p2)|j1POj1 |+p2 |m1POm1 |+p2 |m2POm2 | (2.2)

Equation (2.2) shows that r is also the statistical operator describing an
ensemble which is the union of three pure subensembles associated to the
nonorthogonal states {|j1P, |m1P, |m2P} with the indicated weights. Since the
state vectors |m1P, |m2P are, in general, eigenstates of observables different
and incompatible with those having |j2P as an eigenvector, the observables
that have definite values when one member of the ensemble is chosen
become ambiguous when we specify only the statistical operator and not
the actual composition of the ensemble. Obviously, the probabilities that
the theory attaches to the outcomes of all conceivable measurement pro-
cesses coincide for all ensembles associated to the same state r, but from
a conceptual point of view there is a subtle difference between the two
cases, which should be clear to the reader and which we will reconsider in
Section 3.

The considerations of this section, when reference is made to the two
cases of interest for us, i.e., Classical Mechanics and Quantum Mechanics,
can be summarized as follows:

Classical Mechanics:

State Point of the phase space Determinism(qi, pi)

state Probability measure on the phase space Epistemic Probabilities
r (qi, pi)

Quantum Mechanics:

State State Vector Nonepistemic Probabilities|kP

state Statistical operator Epistemic and Nonepistemic Probabilities
r=;i pi |kiPOki |

As discussed above, within quantum mechanics it is useful to keep in mind
that for a given state we can still have different information about the
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ensemble associated to it, according whether we know the composition
(weights and state vectors) of the ensemble itself in terms of its pure
subensembles or we know nothing besides the statistical operator.

3. PROPERTIES OF INDIVIDUAL PHYSICAL SYSTEMS

In this section we tackle the problem of attributing properties to indi-
vidual physical systems. In order to come to the most interesting point of
our analysis, i.e., to discuss the specific problems which arise in connection
with this matter in the case of composite quantum systems in entangled
states, it is appropriate to reconsider briefly the case of Classical Mecha-
nics. Within such a theory, as already stated, all conceivable observables,
both referring to the whole system as well as to all its subsystems, are
functions of the positions and momenta of the particles, so that, when one
knows the State of the system, i.e., the phase space point associated to it,
one knows also the precise values of all physical observables. We can claim
that within Classical Mechanics all properties are objectively possessed,
in the precise sense that the measurement of any given observable simply
reveals the pre-existing value possessed by the observable.7 It goes without

7 Here we have tacitly assumed that one can perform ideally faithful measurements, i.e., mea-
surements which reveal precisely the value of the quantities they are devised to measure. In
what follows we will also make the corresponding idealized assumption for the quantum
case, i.e., that if the state vector is an eigenstate of an observable, its measurement will yield
with certainty the associated eigenvalue.

saying that if we lack the complete information about the system, then we
can make statements only concerning the (epistemic) probabilities that it
possesses precise properties. Nevertheless, it remains true that any individ-
ual system (and its subsystems) has all conceivable properties, in spite of
the fact that we can be ignorant about them.8

8 Stated differently, claims of the kind ‘‘the energy of this particle has this specific value’’ have
truth values, i.e., they are definitely either true or false.

As everybody knows, the situation is quite different in quantum
mechanics due to the nonabelian structure of the set of the observables.
Accordingly, as already discussed, the theory, in general, consents to make
only nonepistemic probabilistic predictions about the outcomes of mea-
surement processes even when the State of the system is known. However,
in such a case, there are always complete sets of commuting observables
such that the theory attaches probability one to a precise outcome in a
measurement process of any one of them. It is then natural to assume
(as we will do) that when we can make certain (i.e., with probability one)
predictions about the outcomes, the system possesses objectively the prop-
erty, or element of physical reality ‘‘such an observable has such a value,’’
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independently of our decision to measure it. Here we have used the expres-
sion objective properties and elements of reality with the same meaning that
Einstein (3) gave them in the analysis of the EPR paradox:

If, without in any way disturbing a system, we can predict
with certainty (i.e., with a probability equal to unity) the value of
a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.

When one takes into account the just outlined situation, one can concisely
express the lesson that quantum mechanics has taught us, by stating that
within such a theory one cannot consider (even in principle) an individual
physical system as possessing objectively too many properties. Some of
them can be legitimately considered as actual, all the other have the
ontological status of potentialities. At any rate, according to the remarks of
the previous section, a system in a pure state always has complete sets of
definite and objective properties.

Obviously, when we have not the most accurate knowledge of the phy-
sical situation of the system under consideration, i.e., when we know only its
state, then, in general, we can at most make epistemic probabilistic statements
even about the limited set of properties that the system might possess. As
discussed in the previous section we can, in principle, have a different knowl-
edge of the state of the system according whether we know the precise com-
position of the ensemble to which it belongs or only the statistical operator
associated to it. The difference can be easily appreciated by considering a
particular instance of the situation analyzed in the previous section concern-
ing different ensembles associated to the same statistical operator. Suppose
we have an unpolarized beam of spin 1/2 particles and we are interested only
in their spin properties. The statistical operator corresponding to it is (1/2) I
(I being the identity operator). However, such a state can describe, e.g., an
ensemble of particles with uniform distribution of their spins over all direc-
tions, or an ensemble obtained by putting together an equal number of par-
ticles in the eigenstates associated to the eigenvalue +1 and − 1 of the
observable sz, respectively. While in the second case the statement ‘‘each
particle of the ensemble has surely either the spin up or down along the z-axis’’
is legitimate and true independently of any measurement being actually per-
formed, it is certainly illegitimate in the first one.9

9 Obviously, in both cases, if one subjects all particles to a measurement of their z-spin compo-
nent, he will get almost in 1/2 of the cases the outcome up and in 1/2 of the cases the outcome
down. However, here we are not making exclusive reference to the outcomes, but to the possi-
bility of considering a property as objectively (i.e., independently of our decision to perform a
measurement) possessed. From this point of view the two cases are radically different.
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Up to this point we have confined our attention to quantum systems
considered as a whole. However, as already mentioned, the phenomenon of
quantum entanglement makes the situation much more puzzling when
consideration is given to composite quantum systems and one raises the
problem of the properties of their constituents. As we will see, in such a
case it is very common to meet situations (most of which arise as a conse-
quence of the interactions between the constituents) in which the constitu-
ents themselves do not possess any property whatsoever. This is a new
feature which compels us to face a quite peculiar state of affairs: not only
must one limit drastically the actual properties of physical systems (being in
any case true that the system as a whole always has some properties), but
one is forced also to accept that the parts of a composite system can have
no property at all. Only the entire system, even if its parts are far apart and
noninteracting, has some properties, while its parts have only potentialities
and no actualities. In this way the quantum picture of the universe as an
‘‘unbroken whole,’’ or as ‘‘undivided,’’ emerges.

Quantum entanglement has played a central role in the historical
development of quantum mechanics, in particular since it has compelled
the scientific community to face the essentially nonlocal features of natural
processes. Nowadays, entangled states have become the essential ingre-
dients of all processes involving teleportation and quantum cryptography
and constitute an important tool for implementing efficient quantum algo-
rithms. This explains why a great deal of efforts has been spent by theorists
during the last years in trying to characterize the very nature and properties
of entanglement, and this is also the reason which motivates our attempt to
deepen some questions about these matters.

PART II. ENTANGLEMENT AND PROPERTIES OF QUANTUM

SYSTEMS OF DISTINGUISHABLE PARTICLES

IN PURE STATES

As already stressed, the problem of attributing properties to the con-
stituents of composite systems in entangled states is a rather delicate one.
Here we will discuss this problem and we will derive a series of significant
theorems with particular reference to systems of distinguishable particles in
pure states.

4. ENTANGLEMENT OF TWO DISTINGUISHABLE PARTICLES

In this section we study the Entanglement between two distinguishable
particles S1 and S2. Let us suppose that the two particles are parts of
a larger quantum system S=S1+S2, whose associated Hilbert space H
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is the direct product of the Hilbert spaces of the single subsystems,
H=H1 éH2. As already stated, in this Part of the paper we will always
assume that the composite quantum system S is described by a state vector
|k(1, 2)P ¥H or, in a totally equivalent manner, by a pure density operator
r=|k(1, 2)POk(1, 2)|.

4.1. General Definition and Theorems

Let us start by characterizing a non-entangled (a separable) composite
system by making explicit reference to the fact that one of its two constit-
uent subsystems possesses complete sets of properties (as we will see this in
turn implies that the same is true for the other constituent):

Definition 4.1. The system S1, subsystem of a composite quantum
system S=S1+S2 described by the pure density operator r, is non-
entangled with subsystem S2 if there exists a projection operator P (1) onto a
one-dimensional manifold of H1 such that:

Tr (1+2)[P(1) é I (2)r]=1 (4.1)

The fact that in the case of non-entangled states it is possible to con-
sider each one of the constituents as possessing complete sets of well defi-
nite physical properties, independently of the existence of the other part,
follows directly from the following theorem:

Theorem 4.1. If consideration is given to a composite quantum
system S=S1+S2 described by the pure state vector |k(1, 2)P (or, equiv-
alently by the pure density operator r=|k(1, 2)POk(1, 2)|) of H=H1 éH2,
each of the following three conditions is necessary and sufficient in order
that subsystem S1 is non-entangled with subsystem S2:

1. there exists a projection operator P (1) onto a one-dimensional
manifold of H1 such that Tr (1+2)[P(1) é I (2)r]=1;

2. the reduced statistical operator r (1)=Tr (2)[r] of subsystem S1 is a
projection operator onto a one-dimensional manifold of H1;

3. the state vector |k(1, 2)P is factorizable, i.e., there exist a state
|f(1)P ¥H1 and a state |t(2)P ¥H2 such that |k(1, 2)P=|f(1)P é |t(2)P.

Proof. If subsystem S1 is non-entangled with S2 then, according to
Definition4.1condition1 is satisfied, i.e.,Tr (1+2)[P(1) é I (2)r]=Tr (1)[P (1)r (1)]
=1. Since P (1) projects onto a one-dimensional manifold and r (1) is a
statistical operator (i.e., a trace-class, trace one, semipositive definite and
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hermitian operator), the last equality implies r (1)=P(1), i.e., r (1) is a
projection operator onto a one-dimensional manifold.

If r (1) is a projection operator onto a one-dimensional manifold
(condition 2) then it is useful to resort to von Neumann’s biorthonormal
decomposition of the state |k(1, 2)P in terms of states of H1 and H2 (if
there is any accidental degeneracy we can dispose of it as we want):

|k(1, 2)P=C
k

pk |fk(1)P é |tk(2)P (4.2)

where the pk are real and positive numbers satisfying ;k p2k=1. Equation
(4.2) implies:

Tr (2)[|k(1, 2)POk(1, 2)|]=C
k

p2k |fk(1)POfk(1)| (4.3)

The r.h.s. of this equation, due to the orthogonality of the states |fk(1)P,
can coincide with a projection operator onto a one-dimensional manifold
iff the sum in (4.3) contains only one term, let us say the first one, the
corresponding coefficient p1 taking the value 1. Accordingly, from (4.2) we
get:

|k(1, 2)P=|f1(1)P é |t1(2)P (4.4)

i.e., |k(1, 2)P is factorized.
Finally, if |k(1, 2)P is factorized as in (4.4), then the one-dimensional

projection operator P (1)=|f1(1)POf1(1)| satisfies:

Tr (1+2)[P(1) é I (2)r]=1 (4.5)

and subsystem S1 is not entangled with S2. L

4.2. Entanglement and Properties of Two Distinguishable Particles

The analysis of the previous subsection allows us to conclude that if a
quantum system composed of two subsystems is non-entangled, the states
of subsystems S1 and S2 are completely specified, in the sense that it is
possible to associate to each of them a unique and well-defined state vector.
According to our previous discussion, the individual subsystems can there-
fore be thought of as having complete sets of definite and objective prop-
erties of their own.
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We pass now to analyse the case of composite systems of two subsys-
tems in entangled states. According to Theorem 4.1, the reduced density
operator of each subsystem is not a projection operator onto a one dimen-
sional manifold. It is then useful to analyse whether there exist projection
operators on manifolds of dimension greater than or equal to 2 of H1,
satisfying condition (4.1). As shown by the following theorem, there is a
strict relation between such projection operators and the range R[r (1)] of
the reduced statistical operator r (1):

Theorem 4.2. A necessary and sufficient condition for the projec-
tion operator P (1)M1

onto the linear manifold M1 of H1 to satisfy the two
following conditions:

1. Tr (1)[P(1)M1
r (1)]=1;

2. there is no projection operator P̃ (1) of H1 satisfying the conditions
P̃ (1) < P (1)M1

(i.e., it projects onto a proper submanifold N1 of M1) and
Tr (1)[P̃ (1)r (1)]=1,

is that the range R[r (1)] of the reduced statistical operator r (1) coincides
with M1.

Proof. IfR[r(1)]=M1, thenP(1)M1
r(1)=r(1) implying thatTr(1)[P(1)M1

r(1)]
=Tr (1)[r (1)]=1, while any projection operator P̃ (1) on a proper submani-
fold of M1 satisfies Tr (1)[P̃ (1)r (1)] < 1.

Conversely if Tr (1)[P (1)M1
r (1)]=1 we consider the spectral decomposi-

tion of r (1), where only eigenvectors corresponding to non-zero eigenvalues
appear:

r (1)=C
i
pi |ji(1)POji(1)|, C

i
pi=1, pi ] 0 -i (4.6)

We then have

Tr (1)[P (1)M1
r (1)]=C

i
pi Tr (1)[P

(1)
M1
|ji(1)POji(1)|]

=C
i
pi ||P

(1)
M1
|ji(1)P||2=1 (4.7)

implying, since ;i pi=1 and ||P (1)M1
| ji(1)P||2 [ 1, that P (1)M1

| ji(1)P=
|ji(1)P.

The last equation shows that P (1)M1
leaves invariant R[r (1)] so that

M1 `R[r (1)]. If the equality sign holds we have proved the sufficiency. On
the contrary if M1 ‡R[r (1)], then the projection operator on the closed
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submanifold R[r (1)] of M1 satisfies condition Tr (1)[P (1)R[r(1)]r
(1)]=1 con-

trary to the assumptions. We have therefore proved that R[r (1)]=M1. L

Let us analyze in detail the consequences of the above theorem by
studying the following two cases concerning the range of the reduced
statistical operator r (1):

1. R[r (1)]=M1 …H1,

2. R[r (1)]=H1,

As it has just been shown, in the first case (recall that we are consid-
ering the case in which the dimensionality of the manifold M1 is strictly
greater than one) the projection operator P (1)M1

on M1 is such that
Tr (1)[P (1)M1

r (1)]=1. Accordingly, given any self-adjoint operator W (1) of H1
which commutes with P (1)M1

, if consideration is given to the subset B

(a Borel set) of its spectrum coinciding with the spectrum of its restriction
WR=P

(1)
M1

W (1)P (1)M1
to M1, we can state that subsystem S1 has the objective

(in general unsharp) property that W (1) has a value belonging to B. In par-
ticular, all operators which have M1 as an eigenmanifold, have a precise
objective value. Summarizing, even though in the considered case we
cannot say that subsystem S1 has a complete set of properties by itself (i.e.,
objectively), it still has some sharp or unsharp properties associated to any
observable which commutes with P (1)M1

.
On the contrary, in the second of the above cases, i.e., the one in

which R[r (1)]=H1, we have to face the puzzling implications of entan-
glement in their full generality. In fact, repetition of the argument we have
just developed leads in a straightforward way, when M1 coincides with H1,
to the conclusion that the only projection operator P (1) on H1 satisfying
Tr (1)[P (1)r (1)]=1 is the identity operator I (1) on the Hilbert space H1. The
physical meaning of this fact should be clear to the reader: it amounts to
state that subsystem S1 does not possess objectively any sharp or unsharp
property, i.e., that there is no self-adjoint operator for which one can claim
with certainty that the outcome of its measurement will belong to any
proper subset of its spectrum. The only certain but trivial statement10 which

10 Obviously, the theory attaches precise probabilities to the outcome belonging to any chosen
Borel subset of the spectrum, but no one of such probabilities takes the value 0 or 1. Stated
differently, in the considered case, we cannot speak of any (even quite unsharp) property as
actual, all conceivable properties having the ontological status of potentialities.

is legitimate is that the outcome will belong to the spectrum. In the above
situation we say that subsystem S1 is totally entangled with subsystem S2.

In the just considered case of total entanglement we have (appropri-
ately) assumed the Hilbert spaces H1 and H2 to be infinite-dimensional. If
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one is interested in finite, let us say N-dimensional Hilbert spaces, then,
besides the fact that the range of r (1) is the whole Hilbert space H1, it can
also happen that r (1) itself is a multiple (by the factor 1/N) of the identity
operator. In such a case, the subsystem S1 not only does not possess any
objective property, but it is characterized by the fact that the probabilities
of giving any outcome in a measurement of any complete set of commuting
observables are all equal to 1/N. In a very precise sense one could state
that the system has only potentialities and moreover that they are totally
indefinite. Since in many processes involving quantum teleportation,
quantum cryptography and in the studies about quantum information one
often makes reference to finite-dimensional Hilbert spaces, and thus one
can easily meet the just mentioned situation, a specific term has been
introduced to deal with this state of affairs in which the properties of each
subsystem are completely indefinite. Accordingly, the entangled states of
two subsystems for which the reduced statistical operators are multiples of
the identity are usually referred to as maximally entangled states.11

11 In the infinite-dimensional case, to meet maximal entanglement one is compelled to enlarge
the class of states and to resort to states which cannot be associated to bounded, trace class,
trace one, semipositive definite operators. We will not analyze here this case.

In order to clarify the two paradigmatic situations we have just
analyzed, let us consider the simple case of a system composed by an electron
and a positron, which we will label as particle 1 and particle 2 respectively.

Example 1. Let us suppose that the e−e+ system is described by the
following state vector (with obvious meaning of the symbols):

|k(1, 2)P=
1

`2
[|nF‘P1 |nFaP2−|nFaP1 |nF‘P2] é |RP1 |LP2 (4.8)

where we have indicated with |RP and |LP two orthonormal states, whose
coordinate representations are two specific square-integrable functions
having compact disjoint supports at Right and Left, respectively. The
reduced density operator describing the electron (obtained by taking the
trace on the degrees of freedom of the second particle) acts on the infinite
dimensional Hilbert space, H1=C2 éL(R3) and has the following form:

r (1)=1
2 [|nF‘P1 1OnF‘|+|nFaP1 1OnFa|] é |RP1 1OR|=

1
2 I é |RP1 1OR| (4.9)

Even though we cannot say anything about the value of the spin along
any arbitrary direction nF, we can nevertheless state that the electron is, with
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certainty, inside the bounded right region R, and an analogous statement,
i.e., that it is inside the bounded region L, can be made concerning the
positron. Therefore the subsystems do not possess a complete set of prop-
erties with respect to both spin and position, but have at least the element
of reality of being in definite spatial regions. This possibility of making
claims about some properties is due to the fact that the range of the statis-
tical operator of Eq. (4.9) is a proper submanifold of H1, i.e., the two
dimensional manifold spanned by |nF‘P1 |RP1 and |nFaP1 |RP1.

Example 2. In place of state (4.8) we consider now the following
state vector for the e−e+ system:

|k(1, 2)P=
1

`2
[|nF‘P1 |nFaP2−|nFaP1 |nF‘P2]

é 5C
i
ci |ji(1)P |hi(2)P6 , ci ] 0 -i (4.10)

{|ji(1)P} and {|hi(2)P} being two complete orthonormal sets of the Hilbert
spaces L(R3) associated to the spatial degrees of freedom of the constitu-
ents. The reduced density operator for the electron is:

r (1)=Tr (2)[|k(1, 2)POk(1, 2)|]=1
2 I
(1) é C

i
|ci |2 |ji(1)POji(1)| (4.11)

In Eq. (4.11), I (1) is the identity operator in the spin space of the electron.
Since the range of r (1) is now the whole Hilbert space of the first particle,
according to the previous discussion we cannot attribute any element of
reality referring to any conceivable observable of the electron: it possesses
only potential and no actual properties.

We hope to have succeeded in giving the appropriate emphasis to the
remarkable peculiarities of the most characteristic trait of quantum mechanics
and in having made clear that it compels us to accept that the subsystems of
a composite system may have no property at all which can be considered as
objectively possessed.

Summarizing, with reference to the range R[r (1)] of the reduced sta-
tistical operator, we can conclude that:

• R[r (1)]=a one-dimensional manifold S subsystem S1 is non-
entangled with S2 S it possesses complete sets of objective properties, the
same holding true for S2;
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• R[r (1)]=a proper submanifold of H1 of dimension greater than
1 S subsystem S1 is partially entangled with S2 S it possesses some objec-
tive properties, however not a complete set of them;

• R[r (1)]=H1 S subsystem S1 is totally entangled with S2 S it does
not possess any objective property whatsoever.

Note that in the second case it may very well happen that while R[r (1)] is a
proper submanifold of H1, R[r (2)] coincides with H2. Analogously, in the
last case it may happen that R[r (2)] is a proper submanifold of H2.

4.3. Entanglement and Correlations

Another consequence of the entanglement of a composite quantum
system is the occurrence of strict correlations between appropriate observ-
ables of the component subsystems, even when they are far apart and non-
interacting. This is expressed by the following theorem:

Theorem 4.3. Subsystem S1 is non-entangled with subsystem S2 iff,
given the pure state |k(1, 2)P of the composite system, the following equa-
tion holds for any pair of observables A(1) of H1 and B(2) of H2 such that
|k(1, 2)P belongs to their domains:

Ok(1, 2)| A(1) é B(2) |k(1, 2)P

=Ok(1, 2)| A(1) é I (2) |k(1, 2)POk(1, 2)|I (1) é B(2)| k(1, 2)P (4.12)

Note that Eq. (4.12) implies that no correlation exists between such
pairs of observables.

Proof. If S1 is non-entangled with S2 then, according to
Theorem 4.1, |k(1, 2)P is factorized, from which Eq. (4.12) follows trivially.

Let us now assume that Eq. (4.12) is satisfied by all bounded operators
A(1) and B(2). Given the state |k(1, 2)P we consider its biorthonormal
decomposition

|k(1, 2)P=C
i
pi |ji(1)P |hi(2)P (4.13)

Now we choose:

A(1)=|jr(1)POjr(1)| B(2)=|hr(2)POhr(2)| (4.14)
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and we impose Eq. (4.12) to hold for the considered state and the chosen
observables. Since:

Ok(1, 2)| A(1) B(2) |k(1, 2)P=p2r

Ok(1, 2)| A(1) |k(1, 2)POk(1, 2)| B(2) |k(1, 2)P=p4r
(4.15)

the request (4.12) implies that pr=1 or that pr=0 for any r, which, by
taking into account that ;i p

2
i=1 shows that only one term occurs in

Eq. (4.13), i.e.,

|k(1, 2)P=|jk(1)P |hk(2)P (4.16)

for an appropriate k. We have thus proved that if the state is not factorized
there is at least a pair of observables for which Eq. (4.12) is not satis-
fied. L

The two observables appearing in Eq. (4.12) being completely arbi-
trary, the previous theorem holds also for projection operators: with such
a choice one sees that in the case of entanglement the joint probabilities
Ok(1, 2)| P (1) é P (2) |k(1, 2)P for outcomes of independent measurement
processes performed on both subsystems cannot be expressed, in general, as
the product of the probabilities for the two outcomes. Now, within quantum
mechanics with the completeness assumption, it is easy to prove (4–7) that the
mere fact of performing a measurement on one of the two entangled
systems cannot alter the probability of any given outcome for a measure-
ment on the other. If one takes into account this fact, the just outlined
situation implies that at least some probabilities for the outcomes of mea-
surements on subsystem S1 depend on the outcomes of measurements per-
formed on S2. Such a peculiar feature12 displayed by systems in non-sepa-

12 For a detailed discussion of this point, see refs. 8–11.

rable (i.e., non factorized) states is usually termed as Outcome Dependence.
As it is well known the simplest example of this curious characteristics

of entangled quantum systems is represented by the paradigmatic case of
the singlet state of two distinguishable spin 1/2-particles when one dis-
regards the spatial degrees of freedom:

|k(1, 2)P=
1

`2
[|z‘P1 |zaP2−|zaP1 |z‘P2] (4.17)

The joint probability, Pr(s1z=‘, s2z=a), of finding the first particle
with spin up and the second particle with spin down along z-direction,
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when two measurements along the same axis are actually performed, equals
1/2. On the other hand the probabilities Pr(s1z=‘) and Pr(s2z=a) of
getting the indicated outcomes, which are defined as:

Pr(s1z=‘)= C
y=‘, a

Pr(s1z=‘, s2z=y)

Pr(s2z=a)= C
x=‘, a

Pr(s1z=x, s2z=a)
(4.18)

are both equal to 1/2 so that:

Pr(s1z=‘) ·Pr(s2z=a)=1
2 ·
1
2 (4.19)

Thus, in accordance with Theorem 4.3, the joint probability Pr(s1z=‘,
s2z=a)=1/2 does not match the value (4.19), proving therefore the
Outcome Dependence property displayed by non-separable states. This
naturally leads to the conclusion that the probability distributions of the
results of measurements on the two separate entangled subsystems in the
singlet state are dependent from each other.

5. ENTANGLEMENT OF N DISTINGUISHABLE PARTICLES

In this section we extend the previous analysis to the case in which the
quantum system under consideration is composed by more than two sub-
systems. This generalization is not trivial, since it requires to take into
account all possible correlations between the component particles. In par-
ticular, it may happen that a group of particles, which can be entangled or
non-entangled among themselves, is not entangled with the remaining ones.
After having identified disentangled groups, one must repeat the analysis
for the members of each group, up to the point in which he has grouped all
the particles of the system (which here we assume to be all distinguishable
from each other) into sets which are disentangled from each other, while no
further decomposition is possible. Apart from this complication the
problem can be tackled by following step by step the procedures we have
used in the previous sections to deal with systems composed of two distin-
guishable constituents. The extreme case, as we will see, is that of a system
in a state corresponding to completely non-entangled constituents. Since all
arguments and proofs of the theorems we will present in this section can be
obtained by repeating step by step those of the previous section for the case
of two particles, we will limit ourselves to present the relevant definitions
and theorems.
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5.1. Entanglement between Subsets of the Constituents

We begin by considering the possibility of grouping the particles in
two subsets which are non-entangled with each other. Obviously, the par-
ticles of each subset may be entangled among themselves. Let us consider
a composite system of N distinguishable quantum particles, whose state
vector |k(1,..., N)P belongs to the direct product of the single particle
Hilbert spaces, H=<i éHi, and let us adopt the following definition:

Definition 5.1. The subsystem S(1 · · ·M)=S1+·· ·+SM of a composite
quantum system S=S1+·· ·+SM+·· ·+SN in the pure state |k(1,..., N)P,
is non-entangled with the subsystem S(M+1· · ·N)=SM+1+·· ·+SN if there
exists a one dimensional projection operator P (1 · · ·M) of H1 é · · · éHM,
such that:

Tr (1+· · ·+N)[P (1 · · ·M) é I (M+1· · ·N)|k(1,..., N)POk(1,..., N)|]=1 (5.1)

This definition implies that we can attribute complete sets of objective
properties (elements of reality) to at least the two subgroups of the particles
we have indicated as S(1 · · ·M) and S(M+1· · ·N). The natural generalization of
the corresponding theorem for two particles is then easily derived by
recalling that the biorthonormal decomposition holds in general for the
direct product of two Hilbert spaces and by repeating step by step its
proof:

Theorem 5.1. If consideration is given to a many-particle quantum
system described by the pure state |k(1,..., N)P (or by the corresponding
pure density operator) of the Hilbert space H=<i éHi, each of the
following three conditions is necessary and sufficient in order that subsys-
tem S(1 · · ·M) is non-entangled with subsystem S(M+1· · ·N):

1. there exists a projection operator P (1 · · ·M) onto a one-dimensional
manifold of H1 é · · · éHM such that Tr (1+· · ·+N)[P(1 · · ·M) é I (M+1· · ·N)r (1 · · ·N)]
=1;

2. the reduced statistical operator r (1 · · ·M)=Tr (M+1· · ·N)[r (1 · · ·N)] of
subsystem S(1 · · ·M) is a projection operator onto a one-dimensional mani-
fold of H1 é · · · éHM;

3. the state vector |k(1,..., N)P is factorizable, i.e., there exist a
state |f(1,..., M)P of H1 é · · · éHM and a state |t(M+1,..., N)P of
HM+1 é · · · éHN such that |k(1,..., N)P=|f(1,..., M)Pé |t(M+1,..., N)P.
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It is worthwhile to generalize Theorem 4.2 to the present situation
of N distinguishable particles. We show once again that there is a strict
relation between the existence of a projection operator P (1 · · ·M) satisfying
condition (5.1), i.e., between that fact that the particles fall into two non-
entangled sets, and the range R[r (1 · · ·M)] of the reduced statistical operator
r (1 · · ·M) of the first M particles of the compound system:

Theorem 5.2. A necessary and sufficient condition for the projec-
tion operator P (1 · · ·M)M onto the linear manifold of H1 é · · · éHM to satisfy
the two following conditions:

1. Tr (1 · · ·M)[P (1 · · ·M)M r (1 · · ·M)]=1;

2. there is no projection operator P̃ (1 · · ·M)N of H1 é · · · éHM satis-
fying the conditions P̃ (1 · · ·M)N < P (1 · · ·M)M (i.e., it projects onto a proper sub-
manifold N of M) and Tr (1 · · ·M)[P̃ (1 · · ·M)N r (1 · · ·M)]=1,

is that the range R[r (1 · · ·M)] of the reduced statistical operator r (1 · · ·M)

coincides with M.

Proof. It is a straightforward generalization of the proof already
given for Theorem 4.2. L

Leaving aside the case which we have already analyzed in which M is
one-dimensional, once again two possibilities arise:

1. R[r (1 · · ·M)]=M …H1 é · · · éHM,

2. R[r (1 · · ·M)]=H1 é · · · éHM.

While in the first case we can say that the two groups of particles are
partially entangled since we can attribute to the subsystem S(1 · · ·M) some
objective properties (in fact, given an operator W (1 · · ·M) which commutes
with P (1 · · ·M)M we can consider the spectrum B of its restriction WR=
P (1 · · ·M)M W (1 · · ·M)P (1 · · ·M)M to M, and we can say that subsystem S(1 · · ·M) has the
objective and (possibly) unsharp properties that WR has a value belonging
to B), in the second case subsystem S(1 · · ·M) is totally entangled since it does
not possess any objective property whatsoever (the only projection opera-
tor P (1 · · ·M) satisfying condition (5.1) being the identity operator).

5.2. The Case of Completely Non-Entangled Constituents

As already remarked, the constituents of the subsystems S(1 · · ·M) and
S(M+1· · ·N) of the original system may, in turn, be entangled or non-
entangled among themselves. One has then to consider the corresponding
states |f(1,..., M)P and |t(M+1,..., N)P and to repeat for them an analysis

Entanglement and Properties of Composite Quantum Systems 69



of the type we have just described. We will not go into details, we will limit
ourselves to analyze briefly the case in which all N constituents of the
original system are non-entangled with each other.

Definition 5.2. The pure state |k(1,..., N)P ¥H1 é · · · éHN is
completely non-entangled if there exist N one-dimensional projection
operators P (i) belonging to the Hilbert space Hi respectively, such that:13

13 We observe that it is sufficient to admit that there exist N−1 such projection operators,
since from the existence of N−1 of them it follows that a further operator with the same
properties must exist.

Tr (1+· · ·+N)[P(i) |k(1,..., N)POk(1,..., N)|]=1 -i=1· · ·N (5.2)

One can then easily prove the following theorems which are straight-
forward generalizations of those we have proved for the simpler case of
two-particle states.

Theorem 5.3. The state |k(1,..., N)P is completely non-entangled
iff the N reduced density operators r (i)=Tr-j ] i[|k(1,..., N)POk(1,..., N)|],
where the trace is calculated with the exclusion of subsystem i, are one
dimensional projection operators.

Theorem 5.4. The pure state |k(1,..., N)P ¥H1 é · · · éHN is com-
pletely non-entangled iff it is completely factorizable, i.e., there exist N states
|j(1)P ¥H1,..., |h(N)P ¥HN such that |k(1,..., N)P=|j(1)Pé · · · é |h(N)P.

5.3. Correlations between the Subsystems

Obviously, one can repeat also in the present case the considerations
of Section 4.3 and one can show that in the case in which the first M par-
ticles are non-entangled with the remaining K=N−M ones, an equation
perfectly analogous to (4.12) holds. In fact

Theorem 5.5. Subsystem S(1 · · ·M) is non-entangled with subsystem
S(M+1· · ·N) iff, given the pure state |k(1 · · ·N)P of the composite system,
the following equation holds for any pair of observables A(1 · · ·M) of
H1 é · · · éHM and B(M+1· · ·N) of HM+1 é · · · éHN such that
|k(1 · · ·N)P belongs to their domains:

Ok(1 · · ·N)| A é B |k(1 · · ·N)P

=Ok(1 · · ·N)| A |k(1 · · ·N)POk(1 · · ·N)| B |k(1 · · ·N)P (5.3)
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From the above equation there follows that the joint probabilities
for outcomes of independent measurement processes on the two non-
entangled subsystems factorize.

PART III. ENTANGLEMENT AND PROPERTIES OF QUANTUM

SYSTEMS OF IDENTICAL PARTICLES IN PURE STATES

This part is devoted to the problem of attributing properties and to the
analysis of entanglement of composite systems whose constituents are
identical. As we will see such a problem is a quite delicate one and requires
a detailed discussion. With the exception of few papers (12–15) this matter has
not been adequately discussed in the literature.

6. IDENTITY, INDIVIDUALITY AND PROPERTIES IN QUANTUM

THEORY

The so called ‘‘principle of individuality’’ of physical systems has a
long history in philosophy, the most naive position about it deriving from
the observation that even two extremely similar objects will always display
some differences in their properties allowing to distinguish and to indivi-
duate the objects. Leibniz has strongly committed himself to such a posi-
tion by claiming: ‘‘there are never in nature two exactly similar entities in
which one cannot find an internal difference.’’ However, one could try to
individuate even absolutely identical objects by taking into account that
they differ at least for their location in space and time. In the debate about
this problem it is generally agreed that the objects we are interested in
should be regarded as individuals. But then a quite natural problem arises:
can the fundamental ‘‘objects’’ of current physical theories, such as elec-
trons, protons, etc., be regarded as individuals? And what is the status of
such a question within the classical and quantum schemes?

The first obvious remark is that in both schemes such entities are
assumed as identical in the sense of possessing precisely all the same
intrinsic properties, such as rest mass, charge, spin, magnetic moment, and
so on. However, within the framework of classical mechanics each particle
follows a perfectly defined trajectory and thus it can (at least in principle)
be distinguished from all the others.

The situation is quite different in quantum mechanics, due to the fact
that such a theory does not even allow to entertain the idea of particle
trajectories and implies that wave functions spread, so that, even if one
could label at a certain time one of the two identical particles as 1 and the
other as 2, one would not be able, even in principle, to claim, with reference
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to a subsequent act of detection, whether the particle which has been detected
is the one he has labeled 1 or 2.

The above facts have led some philosophers of science to the conclu-
sion that quantum particles cannot be regarded as individuals in any of the
traditional meanings of such a term. We will not enter into this relevant
question for which we refer the reader to some recent interesting contribu-
tions; (16–19) we plainly accept, as imposed by the formalism, that when one
is dealing with assemblies of identical quantum systems it is simply mea-
ningless to try to ‘‘name’’ them in a way or another.

However, the problem of identifying indiscernible objects is not the
relevant one for this paper. What concerns us is the possibility of consid-
ering some properties as objectively possessed by quantum systems.
Accordingly, it goes without saying that, when dealing with the system,
e.g., of two electrons, we will never be interested in questions like ‘‘is the
electron which we have labeled 1 at a certain position or is its spin aligned
with a given axis?’’, but our only concerns will be of the type: on the basis
of the knowledge of the state vector describing the composite system, can
one legitimately consider as objective a statement of the kind ‘‘there is an
electron in a certain region and it has its spin up along a considered
direction?’’ Obviously, in accordance with the position we have taken in
Section 3, the above statement must be read as: does the theory guarantee
that if a measuring apparatus aimed to reveal an electron and to measure
its spin along the considered direction would be activated, it will give with
certainty the considered outcomes?

When one takes such a perspective the problem of considering the
constituents (we are not interested in which ones) of a system of identical
particles as possessing objectively definite properties can be tackled in a
mathematically precise way. Correspondingly, one can formulate in a
rigorous way the idea that identical particles are non entangled.

We will analyze first of all the case of two identical particles, which
represents an ideal arena to point out various subtle aspects of the problem
under investigation.

7. ENTANGLEMENT OF TWO IDENTICAL PARTICLES

As just mentioned, in the case of a system containing identical con-
stituents the problem of entanglement has to be reconsidered. In fact, the
naive idea that the two systems being non-entangled requires and is
guaranteed by the fact that their state vector is the direct product of vectors
belonging to the corresponding Hilbert spaces, cannot be simply trans-
posed to the case of interest. One can easily realize that this must be the
case by taking into account that the only allowed states for a system of two
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identical particles must exhibit precise symmetry properties under the
exchange of the two particles. If one would adopt the previous criterion
one would be led to conclude (mistakenly) that non-entangled states of
identical particles cannot exist.14 The inappropriateness of such a conclu-

14 We are disregarding here the case of the direct product of two identical state vectors for two
identical bosons. Such a case will be discussed in great details in what follows.

sion derives from not taking into account various fundamental facts, in
particular that identical particles are truly indistinguishable, so that one
cannot pretend that a particular one of them has properties, and that the
set of observables for such a system has to be restricted to the self-adjoint
operators which are symmetric for the exchange of the variables referring
to the two subsystems.

To prepare the ground for such an analysis, we begin by discussing the
case of two identical particles which turns out to be simpler. For the
moment we will deal simultaneously with the case of identical fermions and
bosons. However since some relevant differences occur in the two cases we
will subsequently consider them separately in Sections 7.1.1 and 7.1.2.

The necessary modifications of the definitions and theorems of this
section when many particles are taken into account will be given at the
appropriate stage of our analysis, after a critical reconsideration of the
problem of property attribution will be presented.

7.1. Entanglement and Individual Properties of Identical

Constituents

As we have noticed in Section 4.1, in the case of distinguishable par-
ticles the fact that one of the two constituents of a composite system pos-
sesses a complete set of properties automatically implies that the same
holds true for the other constituent. While this happens also for identical
fermions, it is not true, in general, for systems involving identical bosons.
We will strictly link the idea that two identical particles are non entangled
to the request that both of them possess a complete set of properties.
Accordingly we give the following definition:

Definition 7.1. The identical constituents S1 and S2 of a composite
quantum system S=S1+S2 are non-entangled when both constituents
possess a complete set of properties.

Taking into account this fact, and in order to deal as far as possible
simultaneously with the fermion and the boson cases, we will first of all
identify the conditions under which one can legitimately claim that one of
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the constituents possesses a complete set of properties. Once this will be
done, we will separately deal with the problem of the entanglement by dis-
tinguishing the fermion from the boson case.

In accordance with the above analysis, let us begin by identifying the
necessary and sufficient conditions in order that one of a pair of identical
particles possesses a complete set of properties.

Definition 7.2. Given a composite quantum system S=S1+S2 of
two identical particles described by the pure density operator r, we will say
that one of the constituents has a complete set of properties iff there exists
a one dimensional projection operator P, defined on the Hilbert space H (1)

of each of the subsystems, such that:

Tr (1+2)[E(1, 2) r]=1 (7.1)

where

E(1, 2)=P(1) é I (2)+I (1) é P (2)−P (1) é P (2) (7.2)

We stress that the operator E(1, 2) is symmetric under the exchange of the
labels of the two particles and that it is a projection operator: [E(1, 2)]2=
E(1, 2). Furthermore Tr (1+2)[E(1, 2) r] gives the probability of finding at
least one of the two identical particles in the state onto which the one-
dimensional operator P projects, as is immediately checked by noticing that
E(1, 2) can also be written as15

15 We remark that one could drop the last term in the expression (7.3) getting an operator
whose expectation value would give the probability of precisely one particle having the
properties associated to P. In the case of identical fermions this would make no difference
but for bosons it would not cover the case of both particles having precisely the same
properties.

E(1, 2)=P(1) é [I (2)−P (2)]+[I(1)−P (1)] é P (2)+P (1) é P (2) (7.3)

When E(1, 2) is multiplied by r, the trace of the first term in Eq. (7.3) gives
the probability that particle 1 has the property associated to P while the
second one does not have such a property, the trace of the second term
gives the same probability with particle 1 and 2 interchanged and the trace
of the third term gives the probability that both particles have the con-
sidered property. Since the above occurrences are mutually exclusive, con-
dition Tr (1+2)[E(1, 2) r]=1 implies that at least one particle has the
property under consideration.
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It is interesting to relate the fact that one constituent possesses a
complete set of properties to the explicit form of the state vector. This is
specified by the following theorem:

Theorem 7.1. One of the identical constituents of a composite
quantum system S=S1+S2, described by the pure normalized state
|k(1, 2)P has a complete set of properties iff |k(1, 2)P is obtained by sym-
metrizing or antisymmetrizing a factorized state.

Proof. If |k(1, 2)P is obtained by symmetrizing or antisymmetrizing
a factorized state of two identical particles:

|k(1, 2)P=N[|j (1)P é |q (2)P±|q (1)P é |j (2)P] (7.4)

expressing the state |q (i)P as follows

|q (i)P=a |j (i)P+b |j (i)+ P, Oj (i) | j (i)+ P=0 (7.5)

and choosing P=|jPOj| one gets immediately

Tr (1+2)[E(1, 2) r] — Ok(1, 2)| E(1, 2) |k(1, 2)P=
2(1± |a|2)
2(1± |a|2)

=1 (7.6)

Alternatively, since E(1, 2) is a projection operator:

[Ok(1, 2)| E(1, 2) |k(1, 2)P=1]S [||E(1, 2) |k(1, 2)P||=1]

S [E(1, 2) |k(1, 2)P=|k(1, 2)P] (7.7)

If one chooses a complete orthonormal set of single particle states whose
first element |F0P spans the one-dimensional linear manifold onto which
the one dimensional projection operator P projects, writing

|k(1, 2)P=C
ij
cij |F

(1)
i P é |F (2)j P C

ij
|cij |2=1 (7.8)

and, using the explicit expression for E(1, 2) in terms of such a P, one gets:

E(1, 2) |k(1, 2)P=|F (1)0 P é 5C
j ] 0
c0j |F

(2)
j P6+5C

j ] 0
cj0 |F

(1)
j P6 é |F (2)0 P

+c00 |F
(1)
0 P é |F (2)0 P (7.9)

Imposing condition (7.7), i.e., that the r.h.s. of Eq. (7.9) coincides with
|k(1, 2)P as given by Eq. (7.8), we obtain cij=0 when both i and j are
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different from zero. Taking into account that for identical particles
c0j=±cj0, the normalization condition of the state |k(1, 2)P becomes

|c00 |2+2 C
j ] 0
|c0j |2=1 (7.10)

We have then shown that:

|k(1, 2)P=|F (1)0 P é 5C
j ] 0
c0j |F

(2)
j P6+5C

j ] 0
cj0 |F

(1)
j P6 é |F (2)0 P

+c00 |F
(1)
0 P é |F (2)0 P (7.11)

In the case of fermions c00=0. Then, introducing a normalized vector
|X (i)P=`2;j ] 0 c0j |F

(i)
j P one has

|k(1, 2)P=
1

`2
[|F (1)0 P |X (2)P−|X (1)P |F (2)0 P] (7.12)

with |F (k)0 P and |X (k)P orthogonal.
For bosons, defining the following normalized vector

|G (i)P== 4
2− |c00 |2
5C
j ] 0
c0j |F

(i)
j P+

c00
2
|F (i)0 P6 (7.13)

the two-particle state vector (7.11) becomes

|k(1, 2)P==2− |c00 |
2

4
[|F (1)0 P |G (2)P+|G (1)P |F (2)0 P] (7.14)

Note that in this case the states |F (k)0 P and |G (k)P are orthogonal iff the
coefficient c00 is zero. L

There follows that the process of symmetrization or antisymmetrization
of a factorized quantum state describing a system composed of identical
particles does not forbid to attribute a complete set of physical properties
to the subsystems: the only claim that one cannot make is to attribute the
possessed property to one rather than to the other constituent.

At this point it is appropriate to deal separately with the case of iden-
tical fermions and identical bosons. We will denote the operator E(1, 2) of
Eq. (7.2) as Ef(1, 2) and Eb(1, 2) in the two cases, respectively.
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7.1.1. The Fermion Case

We analyze first of all the case of two identical fermions, in which,
since P (1) é P (2)=0 on the space of totally antisymmetric functions, one
can drop such a term in all previous formulae. Accordingly Ef(1, 2)=
P (1) é I (2)+I (1) é P (2). Some remarks are appropriate.

As one sees from Eq. (7.12) and in accordance with Definition 7.2, due
to the orthogonality of |F0P and |XP, for such a state one can claim not
only that there is one fermion possessing the complete set of properties
identified by the state |F0P, but also one fermion possessing the complete
set of properties identified by the state |XP.

According to Definition 7.1, we have thus proved the following
theorem for a two fermion system:

Theorem 7.2. The identical fermions S1 and S2 of a composite
quantum system S=S1+S2 described by the pure normalized state
|k(1, 2)P are non-entangled iff |k(1, 2)P is obtained by antisymmetrizing a
factorized state.

If, with reference to expression (7.12), we call P=|F0POF0 | and
Q=|XPOX| and we define in terms of them the projection operators
Ef(1, 2)=P(1) é I (2)+I (1) é P (2) and Ff(1, 2)=Q(1) é I (2)+I (1) é Q (2), we
see that

˛Tr (1+2)[Ef(1, 2) |k(1, 2)POk(1, 2)|]=1,

Tr (1+2)[Ff(1, 2) |k(1, 2)POk(1, 2)|]=1,
(7.15)

Moreover, Ef(1, 2) ·Ff(1, 2) is a projection operator onto a one-dimen-
sional manifold of the Hilbert space of the two fermions, it coincides with
the operator P (1) é Q (2)+Q(1) é P (2) and, as a consequence of the relations
(7.15), it satisfies:

Ok(1, 2)| Ef(1, 2) ·Ff(1, 2) |k(1, 2)P

— Ok(1, 2)| P (1) é Q (2)+Q(1) é P (2) |k(1, 2)P=1 (7.16)

Before concluding this section we judge it extremely relevant to call atten-
tion to the existence of a certain arbitrariness concerning the properties one
can consider as objectively possessed by the constituents of a non entangled
state of two fermions. In fact, suppose the state |k(1, 2)P has the expres-
sion (7.12). Then, if consideration is given to the two dimensional manifold
spanned by the single particle states |F0P and |XP, one immediately sees
that if one chooses any two other orthogonal single particle states |LP and
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|CP spanning the same manifold, then |k(1, 2)P can also be written (up to
an overall phase phactor) as:

|k(1, 2)P=
1

`2
[|L (1)P |C (2)P−|C (1)P |L (2)P] (7.17)

Obviously, such an expression makes legitimate the assertion that the two
fermions have the complete sets of properties associated to |LP and |CP.

Such a fact might appear as rather puzzling. However as we will see
in Section 7.4, it does not give rise to conceptual problems, but it requires
to analyze more deeply the situation, to make perfectly clear the subtle
interplay between the identity of the constituents and the problem of attri-
buting objective properties to them.

7.1.2. The Boson Case

Let us consider now the boson case. As one sees from Eqs. (7.4)
and (7.14), once more the requirement that one of the two identical bosons
possesses a complete set of properties implies that the state is obtained by
symmetrizing a factorized state. However, there are some remarkable dif-
ferences with respect to the fermion case. With reference to the expression
(7.14) we see that now three cases are possible:

• |G (i)P3 |F (i)0 P. In such a case the state is |k(1, 2)P=|F (1)0 P é |F (2)0 P
and one can claim that ‘‘there are two bosons with the complete set of
properties associated to P=|F0POF0 |.’’

• OG (i)|F (i)0 P=0, i.e., c00=0. One can then consider the operators
Eb(1, 2) and Fb(1, 2) and their product Eb(1, 2) Fb(1, 2)=P(1) é Q (2)+
Q (1) é P (2) where P=|F0POF0 | and Q=|GPOG|. Exactly the same argu-
ment of the case of two identical fermions makes then clear that one can
legitimately claim that ‘‘state |k(1, 2)P represents a system where one of the
two bosons has the properties associated to the projection operator P and
one those associated to the projection operator Q.’’

• Finally it can happen that OG (i) |F (i)0 P ] 0 but |G (i)P is not propor-
tional to |F (i)0 P. Then, even though we can state that ‘‘there is a boson with
the properties associated to the projection operator P’’ as well as ‘‘there is
a boson with the properties associated to the projection operator Q,’’ we
cannot state that ‘‘the state (7.14) describes a system in which one of the
bosons has the properties associated to P and the other those associated
to Q.’’ Actually in the considered case there is a non vanishing probability
of finding both particles in the same state.

According to our Definition 7.1 which, as already stated, we adopt com-
pletely in general for systems of identical particles, we see that in the last of
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the just considered cases we cannot assert that the two bosons are non
entangled, while we can do so for the first two cases. The following
theorem has thus been proved:

Theorem 7.3. The identical bosons of a composite quantum system
S=S1+S2 described by the pure normalized state |k(1, 2)P are non-
entangled iff either the state is obtained by symmetrizing a factorized
product of two orthogonal states or if it is the product of the same state for
the two particles.

Before concluding, we point out that in the boson case and when
|k(1, 2)P is obtained by symmetrizing two orthogonal vectors, contrary to
what happens for two fermions, the two states are perfectly defined (up to
a phase factor), i.e., there are no other orthogonal states |aP and |bP dif-
fering from |F0P and |GP, such that one can write |k(1, 2)P in the form:

|k(1, 2)P=
1

`2
[|a (1)P |b (2)P+|b (1)P |a (2)P] (7.18)

The proof is easily derived along the following lines. Writing16

16 Note that given |a (i)P we have chosen a precise phase factor in defining |b (i)P

˛ |a (i)P=a |F
(i)
0 P+b |G

(i)P

|b (i)P=−bg |F (i)0 P+a
g |G (i)P

(7.19)

with |a|2+|b|2=1, we get from Eq. (7.18):

|k(1, 2)P=
1

`2
[−2abg |F (1)0 P |F (2)0 P+(|a|2−|b|2)(|F (1)0 P |G (2)P

+|G (1)P |F (2)0 P)+2bag |G (1)P |G (2)P] (7.20)

which can coincide with

|k(1, 2)P=
1

`2
[|F (1)0 P |G (2)P+|G (1)P |F (2)0 P] (7.21)

iff a=0 or b=0, implying that |aP is |F0P and |bP is |GP or viceversa. L

7.1.3. Concluding Remarks

The conclusion of this section is that the concept of entanglement can
be easily generalized to the case of two identical quantum subsystems
provided one relates it to the possibility of attributing complete sets of
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objective properties to both constituents. The theorems of Section 7.1 make
absolutely precise the mathematical aspects characterizing the states which
can be considered as describing non-entangled systems, i.e., the fact that: (i)
the states for the whole system must be obtained by appropriately (anti)-
symmetrizing a factorized state of the two particles; (ii) the factors of such
states must be orthogonal in the fermion case and they can be either
orthogonal or equal in the boson case.

Obviously, the above conclusion implies that entangled states of two
identical particles can very well occur. Just to give an example we can con-
sider the following state of two spin-1/2 particles:

|k(1, 2)P=
1

`2
[|nF‘P1 |nFaP2−|nFaP1 |nF‘P2] é |w(1, 2)P (7.22)

|w(1, 2)P being a symmetric state of L(R3) éL(R3). State (7.22) cannot
be written as a symmetrized product of two orthogonal states, and, conse-
quently no constituent possesses any conceivable complete set of (internal
and spatial) properties.

7.2. Sharp and Unsharp Properties

In our discussion concerning the properties of one of a pair of identi-
cal constituents we have focussed our attention on complete set of proper-
ties. The formalization of this idea consists in assuming that there exists a
single particle projection operator P onto a one-dimensional manifold such
that the projection operator of Eq. (7.2) satisfies condition (7.1). Obviously
we could have played an analogous game by considering a projection
operator PM of the single particle Hilbert space H (1) projecting onto a
multidimensional submanifold M of such a space. Suppose that, with this
choice, the corresponding operator:

EM(1, 2)=P
(1)
M é (I (2)−P (2)M )+(I

(1)−P (1)M ) é P (2)M+P
(1)
M é P (2)M (7.23)

satisfies:

Tr[EM(1, 2) |k(1, 2)POk(1, 2)|]=1 (7.24)

As it is immediate to see one can consider an arbitrary single particle self-
adjoint operator W commuting with PM, and consider the restriction w(M)
of its spectrum to the manifold M. Then the validity of (7.24) implies that
we can state that one of the particles has the property that the value of W

belongs to w(M).
Thus, in the considered case, even though we cannot attribute to any

of the particles a complete set of properties, we can, in general, attribute to
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it unsharp properties. If the only manifold M for which the above situation
holds is the whole Hilbert space, we can state that the particles possess no
sharp or unsharp properties at all.

In complete analogy to what has been said in Section 4.2 concerning
the various degrees of entanglement occurring in systems of distinguishable
particles, it is worthwhile to summarize the situation in the following way,
where |k(1, 2)P represents an arbitrary state of two identical particles:

• there exists a one dimensional projection operator P of H (1) such
that Tr[E(1, 2) |k(1, 2)POk(1, 2)|]=1S one subsystem possesses a com-
plete set of properties;

• there exists a projection operator PM projecting onto a proper
submanifold M …H of dimension greater than 1, such that Tr[EM(1, 2)
|k(1, 2)POk(1, 2)|]=1S one subsystem possesses some properties, but not
a complete set of them;

• there exists no projection operator PM projecting onto a proper
submanifold of H(1) such that Tr[EM(1, 2) |k(1, 2)POk(1, 2)|]=1S one
subsystem (actually both of them) does not possess any property at all.

7.3. Correlations in the Case of Two Identical Particles

In this subsection we reconsider briefly the problem of the correlations
of two particles in entangled or non-entangled states in the case in which
they are identical. Before coming to a detailed analysis let us stress that the
problem under consideration has a particular relevance in the specific case
in which the two particles are in different spatial regions, since this is the
case in which the problem of the nonlocal aspects of the formalism emerges
as a central one. Let us then consider two identical particles with space and
internal degrees of freedom and let us denote as Hsp(1, 2) and Hint(1, 2) the
corresponding Hilbert spaces. The Hilbert space for the whole system
is, obviously, the appropriate symmetric or antisymmetric submanifold
HS, A(1, 2) of the space Hsp(1, 2) é Hint(1, 2). Let us also assume that the
pure state associated to the composite system is obtained by (anti)symme-
trizing a factorized state of the two particles corresponding to their having
different spatial locations. To be explicit, we start from a state:

|kfact(1, 2)P=|vP1 |RP1 |qP2 |LP2 (7.25)

where |vP and |qP are two arbitrary states of the internal space of a particle
and |RP and |LP are two orthogonal states whose spatial supports are
compact, disjoint and far away from each other. This situation is the one of
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interest for all experiments about the non-local features of quantum states.
From the state (7.25) we pass now to the properly (anti)symmetrized one:

|k(1, 2)P=
1

`2
[|vP1 |RP1 |qP2 |LP2±|qP1 |LP1 |vP2 |RP2] (7.26)

Note that we already know that if consideration is given to the operators

E(1, 2)=P (1) é I (2)+I (1) é P (2)−P (1) é P (2), P=|vP |RPOR| Ov|

F(1, 2)=Q (1) é I (2)+I (1) é Q (2)−Q (1) é Q (2), Q=|qP |LPOL| Oq|
(7.27)the following equations hold:

Tr (1+2)[E(1, 2) |k(1, 2)POk(1, 2)|]=1,

Tr (1+2)[F(1, 2) |k(1, 2)POk(1, 2)|]=1
(7.28)

which guarantee that the properties related to the projection operators P
and Q can be considered as objectively possessed. However, here we are
interested in what the theory tells us concerning the correlations between
the outcomes of measurement processes on the constituents. To this
purpose, we consider two arbitrary observables W (1) and S (2) of the internal
space of the particles and we evaluate the expectation value:

Ok| [W (1) |RP1 1OR| é I (2)+I (1) é W (2) |RP2 2OR|]

×[S (1) |LP1 1OL| é I (2)+I (1) é S (2) |LP2 2OL|] |kP=Ov| W |vPOq| S |qP
(7.29)

Equation (7.29) shows that the ‘‘properties referring to the internal degrees
of freedom’’ factorize, just as in the case of two distinguishable particles.
Obviously, the same conclusion does not hold when the state is not of the
considered type, e.g., when it is a genuinely entangled state such as:

|k(1, 2)P=1
2 [|vP1 |qP2−|qP1 |vP2] é [|RP1 |LP2±|LP1 |RP2] (7.30)

The conclusion should be obvious: also from the point of view of the cor-
relations, and consequently of the implications concerning nonlocality, the
non-entangled states of two identical particles have the same nice features
of those of two distinguishable particles.

7.4. Deepening the Investigation

The analysis of the previous subsections has clarified the situation
concerning systems of two identical particles, making precise which is the
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appropriate way to pose the problem of attributing objective properties
and of the entanglement within such a context. The relations between the
physical and the formal aspects of such a problem have also been dis-
cussed. However, some delicate questions which deserve a further analysis
have been naturally raised. This subsection is devoted to deal which such
matters. We will begin by trying to make clear, resorting to elementary
physical examples, some subtle points which could give rise to misunder-
standings. Subsequently we will reconsider the problems we have already
mentioned, arising from the arbitrariness about the properties which can be
considered as possessed in the case of identical fermions.

7.4.1. Clarifying the Role of the Spatial and Internal
Degrees of Freedom

Let us consider a system of two identical spin 1/2 particles. We stress
that if one would confine his attention to the spin degrees of freedom
alone, then, following our definitions and theorems, one would be led to
conclude that the singlet state,which can be obtained by antisymmetrizing,
e.g., the state |z‘P1 |zaP2, would be a non entangled state. How does this fit
with our previous remarks and the general (and correct) position that such
a state is, in a sense, the paradigmatic case of an entangled two body
system? We have already called attention to the necessity of taking also
into account, e.g., the position of the constituents, to legitimately raise the
relevant questions about their properties. But the matter must be analyzed
on more general grounds. In analogy with state (7.25) of the previous
section we consider a factorized state of the type

|k(1, 2)P=|z‘P1 |RiP1 |zaP2 |RjP2 (7.31)

with ORi | RjP=dij. Now we can make our point: even though it is mea-
ningless (within a quantum context) to speak of particle 1 as distinguishable
from particle 2, we can ‘‘individuate’’ the identical objects by resorting to the
different spatial quantum numbers i and j. Concerning the state obtained
from (7.31) by the antisymmetrization procedure we are sure that one par-
ticle (we do not know which one) has the spatial property associated to the
quantum number i and one has the property associated to the quantum
number j. It is then meaningful to raise the question of the relations existing
between the internal properties and the spatial properties. In the considered
case we can use each of the differing quantum numbers to ‘‘individuate’’ the
constituents and raise, e.g., the question: has the particle identified by the
quantum number i, definite spin properties? The answer is obviously affir-
mative; in our case it definitely has spin up along the z-axis. Note that we
could also have used the spin quantum numbers to ‘‘individuate’’ the
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particles and we could have raised the question: does the particle with spin
up along z have precise spatial properties? And the answer would have
been yes: it has the spatial properties associated to the state |RiP.

On the contrary, for a state like

|k(1, 2)P=
1

`2
[|z‘P1 |zaP2−|zaP1 |z‘P2] é [|RiP1 |RjP2+|RjP1 |RiP2]

(7.32)

which is not obtainable by antisymmetrizing a factorized state, it is not
possible, for example, to attribute any definite spin property to the particle
identified by the index i and equivalently no definite spatial property can
be attributed to the particle with spin up. In the case where |RiP and |RjP
correspond to two distant spatial location, the vector (7.32) represents the
paradigmatic state considered in the usual EPR argument and in the
experiments devised to reveal the non-local features of quantum mechanics.

The picture should now be clear: no state of two fermions in the
singlet spin state can be obtained by antisymmetrizing a factorized wave
function, when also the remaining degrees of freedom are taken into
account. In this sense, and paying the due attention to the subtle problems
we have discussed, one can understand how there is no contradiction
between the usual statement that the singlet state is entangled and the fact
that, if one disregards the spatial degrees of freedom, it can be obtained by
antsymmetrizing a factorized spin state.

7.4.2. More About the Case of Two Identical Particles

In Section 7.1 we have shown that, in the case of identical particles,
property attribution is legitimate iff the state is obtained by symmetrizing
or antisymmetrizing an appropriate factorized state. However, in the
fermion case the request that the state can be written in the form

|k(1, 2)P=
1

`2
[|L (1)P |C (2)P−|C (1)P |L (2)P] (7.33)

where |LP and |CP are two arbitrary orthogonal vectors of the single par-
ticle Hilbert space H (1) leaves some indefiniteness concerning the possessed
properties and compels us to face the problem arising from this arbitrariness.

In fact, on the one hand, according to the position we have taken in
this paper, which is perfectly in line with the one of Einstein, i.e., that
‘‘when one can predict the outcome of a prospective measurement with
certainty, there is an element of physical reality associated to it,’’ all claims
of the type ‘‘one fermion possesses the complete set of properties associated
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to |CP and the other those associated to |LP’’ are perfectly legitimate for
the state (7.33). On the other hand this might appear, at first sight, quite
embarrassing when one takes into account that the properties we are con-
sidering, when we change the states in terms of which we express the
unique state |k(1, 2)P of the composite system, may be very well incompa-
tible among themselves, in the quantum mechanical sense.

However, there are at least two reasons for which one can ignore this,
at first sight, puzzling situation, one of formal and physical nature, the
second having more to do with the laboratory practice. The general reason
derives from the fact that within quantum mechanics it may very well
happen that incompatible observables have common eigenstates. For
instance, with precise reference to the case under discussion, if considera-
tion is given to the infinitely many noncommuting number operators
Nl=a

†
lal counting the number of fermions in an arbitrary single particle

state |lP of the two dimensional manifold spanned by |LP and |CP, the
state |k(1, 2)P is a simultaneous eigenstate of all the Nl’s belonging to the
eigenvalue 1. This implies, according to the quantum mechanical rules that
any apparatus devised to measure whether there are fermions in such a
state, will give with certainty the outcome 1, i.e., it will allow to conclude
that ‘‘there is one fermion in such a state.’’ No matter how peculiar this
situation might appear, it is a clear cut consequence of the formalism and
of the criterion for attributing properties to physical systems.17

17 We consider it appropriate to call attention to a fact that makes the situation even less
embarrassing than it might appear. To this purpose, let us consider two arbitrary non-
orthogonal vectors |lP and |cP of our two dimensional manifold and the associated projec-
tion operators Pl and Pc. In terms of them we build the projection operators El(1, 2) and
Ec(1, 2), with obvious meaning of the symbols. Suppose now we perform a measurement
aimed to ascertain whether there is one fermion in state |lP, i.e., we measure El(1, 2), or,
equivalently, we measure the observable Nl. We then get for sure the eigenvalue 1 and, and
this is the crucial point, the measurement does not alter in any way the state vector. This
means that the probability of finding, in a subsequent measurement, one fermion in the
state |cP is still equal to one, and has not been influenced by the first measurement.

Coming now to the relevant practical aspects of the problem we stress
once more that, for what concerns entanglement and property attribution,
the physically most significant and interesting aspect is the one of the non-
local correlations between distant and noninteracting particles occurring in
connection with entangled systems. To illustrate this point we can make
reference to the following state of two identical fermions:

|k(1, 2)P=
1

`2
[|z‘P1 |RP1 |zaP2 |LP2−|zaP1 |LP1 |z‘P2 |RP2] (7.34)
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For such a state, as we have already discussed in Section 7.4.1, it is perfectly
legitimate, if we attach a prominent role to positions, to claim that ‘‘there is
a particle at R and it has spin up along the z-axis’’ as well as that ‘‘there is
a particle at L and it has spin down along the z-axis.’’ The possibility of
making such a claim is the characteristic feature which makes such a state
basically different from the state (7.22) or from the singlet state of the EPR
set-up. One cannot however avoid recognizing that, if some meaning would
be attached to single particle states like:

|CP=
1

`2
[|z‘P |RP+|zaP |LP], |LP=

1

`2
[|z‘P |RP−|zaP |LP]

(7.35)

which do not correspond either to definite locations or to definite spin
properties of a particle, then one could claim that in state (7.34) ‘‘there is a
particle with the properties associated to |CP and one with the properties
associated to |LP.’’ It goes without saying that measurements involving
states like those of Eq. (7.35) are extremely difficult to perform and of no
practical interest.

7.5. Concerning some Misconceptions about Entanglement for

Systems of Identical Particles

In the literature one can find some inappropriate statements about
entanglement in the case of systems whose constituents are identical. Such
misconceptions derive from not having appropriately taken into account
the real physical meaning and implications of entanglement. In its essence,
the characteristic trait of entanglement derives from the fact that a system
which is composed of two subsystems is associated to a state vector such
that the subsystems have only ‘‘potentialities’’ concerning most or even all
conceivable observables, potentialities which are immediately actualized
when one performs a measurement on one of the two subsystems (the most
striking situation being connected to instantaneous actualization at-a-dis-
tance). For distinguishable particles, as we have seen, such an occurrence is
strictly related to the fact that the state vector be nonfactorized.

It is therefore not surprising that some authors have been inappropri-
ately led to identify entanglement with factorizability. However, suppose
that in the case of two distinguishable particles, one starts from a state
like (7.31) which is manifestly factorized and, consequently, makes legiti-
mate to state that particle 1 has spin up along the z-axis and is in the
eigenstate |RiP of an appropriate observable W (1) pertaining to the eigen-
value wi, while particle 2 has spin down along the z-axis and is in the
eigenstate |RjP of the observable W (2) pertaining to the eigenvalue wj.
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Suppose now that the two particles are identical fermions, so that one
properly antisymmetrizes the above state. Then, the resulting state vector is
formally no longer factorized, but it is non-entangled since, as we stress
once more taking the risk of being pedantic, it makes perfectly legitimate
to make the joint statement that ‘‘there is one fermion with spin up and
the property W=wi and one fermion with spin down and the property
W=wj.’’ Moreover, the act of measuring one of the two ‘‘properties’’ does
not change in any way the fact that the other property can be considered as
objectively possessed both before and after the measurement process. This
is the reason for which the state must be claimed to be non-entangled.

We call attention to the fact that the state being non-entangled is an
intrinsic property characterizing it, as follows from the analysis of the pre-
vious sections, and does not depend in any way on the basis or the formal
apparatus we choose to describe it.

It is just due to a failure of fully appreciating the above facts that one
can be led to make misleading statements. As an example, in ref. 20 it is
stated that ‘‘one may not draw conclusions about entanglement in configura-
tion space by looking at the states in Fock space.’’ This statement is based on
the fact that, according to the authors, in the case of two bosons, the state:

|fP=|1kF 1lFP (7.36)

which describes two identical particles with momenta kF and lF, is a fac-
torizable state in Fock space, being instead an entangled one if one looks at
its form in terms of the momentum basis for single particles. This argument
is clearly in contradiction with what we have just pointed out. In fact, the
state |fP, if we indicate with a†(kF) the creation operator of a boson with
momentum kF, has the following Fock representation and, equivalently, the
following expression in terms of a single particle momentum basis:

|fP=|1kF 1lFP —
1

`2
a†(kF) a†(lF) |0P.

1

`2
[|kFP1 |lFP2+|lFP1 |kFP2] (7.37)

As the formula shows, the state is obtained by a process of symmetrization
of a factorized state of two ‘‘orthogonal’’ states, and as such it is non-
entangled. In particular it is perfectly legitimate to claim that there exists
with certainty a boson with momentum kF and one with momentum lF.

This means that states which are ‘‘factorized’’ in Fock space have
precisely the same physical properties as those following from their explicit
form in configuration or momentum space. Being non-entangled, in the
case of two identical particles is, just as in the case of two distinguishable
particles, a property which has nothing to do with the way one chooses to
express the state vector.
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8. ENTANGLEMENT OF N INDISTINGUISHABLE PARTICLES

We analyze here the case of N indistinguishable particles. In particular
we will be concerned with the analog of the question we have discussed in
the case of N distinguishable particles: can one single out a ‘‘subgroup’’ of
the constituents (obviously we cannot identify them) to which one can
attach a complete set of properties as objectively possessed? The problem is
conceptually a rather delicate one and requires remarkable care. Moreover,
it has to be stressed that it has a great conceptual and practical relevance.
For instance we can be naturally led to face a situation like the following:
there is a Helium atom here and a Lithium atom there (in a distant region).
We then must pretend that a claim of the kind ‘‘this one is a Helium atom’’
(or, as we will see, in general, one coinciding with it to an extreme—and
controllable—degree of accuracy) can be made consistently, in spite of the
fact that the correct wave function is totally antisymmetric under the
exchange of the electrons of the Helium and Lithium atoms.

Besides these physical aspects we are mainly interested in defining in a
conceptually correct way the idea that the set of N identical particles we
are dealing with can be partitioned into two ‘‘subsets’’ of cardinality M
and K, which are non-entangled with each other.18 By following strictly the

18 The authors of ref. 18 have remarked that, in spite of their indistinguishability, ‘‘the electrons of
an atom, taken as a whole, possess some properties which are characteristic of a set. For instance,
they have a cardinality, even if we cannot count them, hence we cannot make an ordinal number to
correspond to each electron.’’ For this reason they have appropriately introduced the terminol-
ogy quaset (abbreviation for quasi-set) for a collection of quantum elements which are indis-
tinguishable from each other. The authors have also called attention to the possibility of con-
sidering subquasets, by identifying their elements on the basis of their sharing a specific single-
particle property. As a typical example they consider the electrons in the shell 2p of an atom as a
subquaset. In the analysis we are performing, we will deal with a strictly analogous situation,
and so, to be rigorous, we should speak of quasets and subquasets. Moreover, for a satisfactory
description of the situation we are going to tackle, we should enlarge the idea of subquasets by
making reference to a ‘‘subgroup of particles’’ which are related only as a whole to a precise
property. In a sense, we will not make reference to the individual elements which have precise
individual properties, but to the subquaset which has a global property. Our generalization is,
at any rate, strictly related to the one of the authors of ref. 18, since, as we will see, when we will
split a quaset, e.g., ofN fermions into two subquasets of cardinalityM andK, respectively, we
will be lead to assume that there exists an appropriate single particle basis such that the two
quasets involve two disjoint subsets of the elements of this single particle basis. In the paper, for
simplicity, we will not use systematically the appropriate terminology of quasets, and we will
speak, quite loosely, of ‘‘groups of particles.’’ We believe the reader will have clear what we
have in mind, allowing us to avoid resorting to the use of a terminology which is yet not usual in
the analysis of entanglement.

procedure we have introduced for the case of two particles we will do this
by considering the possibility of attributing a complete set of properties to
each subset and we will give the following definition:
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Definition 8.1. Given a quantum system of N identical particles
described by a pure state |k (N)P we will say that it contains two non-
entangled ‘‘subgroups’’ of particles of cardinality M and K (M+K=N),
when both subgroups possess a complete set of properties.

The conditions under which it will be possible to attribute a complete
set of properties to a quantum subsystem will be made mathematically
precise in the following subsections.

As we will see, to make statements of the sort we are interested in, i.e.,
that objective properties can be attached to the subsets associated to a par-
tition of the particles or, equivalently, that such subsets are non-entangled
among themselves, we have to impose quite strict constraints on the state
vector of the whole system. After having identified them in a very precise
manner, we will be able to evaluate how well they are satisfied in practice
and, correspondingly, we will be in the position of judging the degree of
legitimacy of our claims concerning precise physical situations.

Here we will deal, from the very beginning, separately with the
fermion and boson cases.

9. IDENTICAL FERMIONS

To analyze this problem it is appropriate to begin by fixing our nota-
tion and by deriving some simple results which we shall need in what
follows. We will deal with a system of N identical fermions and with sub-
systems of such a system.

9.1. Some Mathematical Preliminaries

We denote as H (R)
A the Hilbert space which is appropriate for a system

of R identical fermions, i.e., the space of the totally skew-symmetric states
|k(1,..., R)P of the variables (e.g spatial and internal) of the constituents.
Obviously H (1) is the space of single particle states. Let us denote as {|jiP}
a complete orthonormal set in such a space. A basis for H (N)

A is then
obtained by antisymmetrizing and normalizing the product states {|ji1 (1)P
é · · · é |jiN (N)P} which, when the subscripts take all the allowed values,
are a basis of H (1) é · · · éH (1). For simplicity let us introduce, as usual,
the linear antisymmetrization operator A which acts in the following way
on the states {|ji1 (1)P é · · · é |jiN (N)P}:

A{|ji1 (1)P · · · |jiN (N)P} — C
P
(−)p P{|ji1 (1)P · · · |jiN (N)P} (9.1)
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where the sum is extended to all permutations P of the variables (1,..., N)
—or equivalently of the subscripts (i1,..., iN)—and p is the parity of the
permutation P. As it is well known A{|ji1 (1)P · · · |jiN (N)P} can be simply
expressed as the determinant of an appropriate matrix. The states (9.1) are
not normalized, their norm being equal to`N!, so that the basis generated
in the above way is given by the states 1

`N!
A{|ji1 (1)P · · · |jiN (N)P}.

We will not use directly such states to express the most general state
of H(N)

A , but we will write it as

|k(1,..., N)P= C
i1,..., iN

ai1 · · · iN |ji1 (1)P · · · |jiN (N)P (9.2)

where the coefficients ai1 · · · iN are totally skew-symmetric and are chosen
in such a way that |k(1,..., N)P turns out to be normalized, i.e., they
satisfy:

aP(i1 · · · iN)=(−)
p ai1 · · · iN ; C

i1,..., iN

|ai1 · · · iN |
2=1 (9.3)

In the first of the above relations P represents an arbitrary permutation of
the subscripts of ai1 · · · iN , and p the parity of the considered permutation.

From now on we will deal with H (N)
A and we will be interested in

‘‘splitting’’ the N identical constituents into two ‘‘subsets’’ (with reference
to their cardinality) ofM and K=N−M particles. We begin by recalling a
trivial fact, i.e, that the Hilbert space H (N)

A is a closed linear submanifold
of the direct product H (M)

A éH (K)
A . This follows trivially from Laplace’s

formula for determinants which can be written as:

A{|ji1 (1)P · · · |jiM (M)P |jr1 (M+1)P · · · |jrK (N)P}

=G[A{|ji1 (1)P · · · |jiM (M)P} A{|jr1 (M+1)P · · · |jrK (N)P}] (9.4)

where the symbol G at the r.h.s. indicates that one has to sum over all the
permutations between the first M particles and the remaining ones, attach-
ing to the various terms the appropriate sign. The above formula shows
that the elements of a basis of H (N)

A can be expressed in terms of the direct
products of the elements of two orthonormal complete sets of H(M)

A and
H (K)
A . Since, when consideration is given to two states which have common

single-particle indices the antisymmetrization procedure yields the zero
vector |wP of H (N)

A , the claim that H (N)
A …H (M)

A éH (K)
A follows.
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9.1.1. Defining an Appropriate Single Particle Basis with
Reference to a Given State of M Fermions

Given our system of N identical fermions, we pick upM of them, and
we consider a state |P (M)(1 · · ·M)P ¥H (M)

A whose Fourier decomposition
on the product basis of the single particle states {|jiP} is:

|P (M)(1 · · ·M)P= C
i1 · · · iM

ai1 · · · iM |ji1 (1)P · · · |jiM (M)P (9.5)

We then choose an arbitrary normalized single particle state |F (1)P, we
represent it on the chosen single particle basis,

|F (1)P=C
t
bt |jtP (9.6)

and, with reference to the state (9.5), we define the following subset VP1+

of H(1):

VP1+ — 3 |F (1)P : C
t
bgt at i2 · · · iM=0, -i2,..., iM 4 (9.7)

We note that VP1+ is independent from the single particle basis we have
used to identify it and from the index which is saturated in Eq. (9.7).

The reader will have no difficulty in realizing that VP1+ is a closed
linear submanifold19 of H (1). It is useful to mention that another way to

19 It must be noted that it may very well happen that such a manifold turns out to contain
only the zero vector of H (1). To see this we consider for simplicity the case M=2 and we
write |P (2)(1, 2)P as in Eq. (9.5), |P (2)(1, 2)P=;ij aij |ji(1)P |jj(2)P, aij=−aji. A vector
|fP=;t bt |jtP belongs to VP1+ iff it satisfies ;j aijb

g
j=0. If one considers a linear operator

A whose representation is given, in the considered basis, by the matrix aij, then |fP ¥ VP1+ iff
A admits the zero eigenvalue, the vector (bg1 ,..., b

g
k ,...) being the associated eigenvector. The

reader will have no difficulty in realizing that an operator A whose matrix elements satisfy
aij=−aji and does not admit the zero eigenvalue is easily constructed. Actually the Pauli
matrix sy is such an operator. The conclusion is that the request—which we will do in what
follows—that VP1+ does not reduce to the zero vector, implies by itself some constraints for
the state |P (M)P. If such constraints are not satisfied, then the procedure we are going to
present cannot be developed and the state |P (M)P cannot be combined with another state
|F (K)P (K=N−M) to generate a state of H (N)

A such that there are ‘‘subsets’’ of M and K
particles possessing definite properties.

characterize VP1+ is the following. Suppose we use the shorthand notation
> dX to denote an integral over the space and a summation over the inter-
nal variables of the fermion X. Then Eq. (9.7) can be written as

VP1+ — 3 |F (1)P : F d1F (1)g(1)P (M)(1, 2,..., M)=04 (9.8)
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0 being the function of the variables (2,..., M) which vanishes almost
everywhere. It goes without saying that, due to the skew-symmetry of
P (M)(1,..., M) in its arguments, the same condition (9.8) can be written by
saturating an arbitrary variable, i.e., by imposing that |F (1)P satisfies
> dX F (1)g(X)P (M)(1,..., X−1, X, X+1,..., M)=0.

Since VP1+ is a closed linear submanifold of H (1) we can now consider
its orthogonal complement VP1:

H (1)=VP1 À VP1+ (9.9)

and we can choose a complete orthonormal set {|fiP} of single particle
states such that, splitting the whole set of nonnegative integers into two
disjoint subsets D and D+ , one has:

|fiP ¥ VP1Z i ¥ D; |fiP ¥ VP1+ Z i ¥ D+ (9.10)

The following theorem will be useful in what follows:

Theorem 9.1. The vector |P (M)(1,..., M)P can be written as:

|P (M)(1,..., M)P= C
i1 · · · iM ¥ D

ci1 · · · iM |fi1 (1)P · · · |fiM (M)P (9.11)

where all the indices i1,..., iM belong to D and moreover all single particle
states whose indices belong to D actually appear (in the sense that some
nonvanishing coefficients characterized by them occur) at the r.h.s. of the
above equation.

In other words, the Fourier expansion of |P (M)P in terms of the states
of the basis {|fiP} involves all single particle states spanning VP1 and no
single particle state spanning VP1+ .

Proof. Suppose there exists an index k belonging to D+ such that
cki2 · · · iM ] 0 for at least one choice of the indices i2 · · · iM. On the other hand,
since k ¥ D+ , the single particle basis vector |fkP belongs to VP1+ and, as
such, it satisfies

Ofk |P (M)P= C
i2 · · · iM

cki2 · · · iM |fi2 (2)P · · · |fiM (M)P=0 (9.12)

Since the vectors |fi2 (2)P · · · |fiM (M)P are linearly independent for any
given choice of the indices i2 · · · iM, Eq. (9.12) implies cki2 · · · iM=0, -i2 · · · iM,
which is contrary to the hypothesis.

92 Ghirardi et al.



On the other hand, let us suppose that there exists an index j belong-
ing to D such that cji2 · · · iM=0 -i2 · · · iM. This means that

Ofj |P (M)P= C
i2 · · · iM

cji2 · · · iM |fi2 (2)P · · · |fiM (M)P=0 (9.13)

implying that the vector |fjP belongs to VP1+ , which is absurd. L

Summarizing, choosing any vector |P (M)(1,..., M)P of H(M)
A such that

VP1+ differs from the zero vector of H (1), uniquely identifies two closed
linear submanifolds of H (1) whose direct sum coincides with H(1) itself,
and, correspondingly, a complete orthonormal set of single particle states
which is the union of two subsets {|fiP}, i ¥ D and {|fjP}, j ¥ D+ such that
all and only the states {|fiP} for which i ¥ D enter into the Fourier expan-
sion of |P (M)(1,..., M)P in terms of the basis generated by the antisymme-
trized and normalized products of the set {|fiP}.

We pass now from the Hilbert space H (1) to the spaces H(M)
A and

H (K)
A , which, as already stated, are those we are interested in. Having par-

titioned the complete set of single particle states {|fjP} into two subsets
according to their indices belonging to D or D+ , we consider now two
important (for our purposes) proper submanifolds VPM of H (M)

A and VPK+
of H(K)

A , respectively. They are simply the manifolds spanned by the states:

VPM:
1

`M!
A{|fi1P,..., |fiMP}, i1,..., iM ¥ D

VPK+ :
1

`K!
A{|fj1P,..., |fjKP}, j1,..., jK ¥ D+

(9.14)

In brief, VPM is the set of all the states of H(M)
A such that their Fourier expan-

sion in terms of the single particle states {|fiP} contains only states whose
indices belong to D, and VPK+ is the set of all states of H(K)

A such that their
Fourier expansions contains only states whose indices belong to D+ .

In virtue of our definition of the two manifolds VPM and VPK+ , there
follows trivially that the saturation of any variable of a state |F (K)P ¥ VPK+
with any variable of a state |S (M)P ¥ VPM gives the null function of the
unsaturated variables:

F dX S (M)(1,..., X,...M) F (K)g(M+1,..., X,...N)=0 (9.15)

We will call a pair of states for which (9.15) holds ‘‘one-particle orthogo-
nal.’’ Analogously, when we have two closed linear manifolds such that
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condition (9.15) is satisfied for any pair of vectors taken from one and the
other of them, we will say that the manifolds themselves are ‘‘one-particle
orthogonal.’’

With reference to Eq. (9.15) we would like to call attention to the fact
that, taking into account the preceding arguments, one can easily prove the
following theorem:

Theorem 9.2. Given any pair of states which are ‘‘one-particle
orthogonal,’’ one can find an appropriate complete orthonormal single
particle basis such that the Fourier expansions of the two states involve
disjoint subsets of the states of this single particle basis.

The proof is easily obtained by noticing, first of all, that Eq. (9.15), if
one fixes the value of all the variables appearing in F (K) different from X,
shows that the manifold VS1+ (with obvious meaning of the symbol) does
not reduce to the zero vector. One then can follow the previous procedure
to build the appropriate single particle basis satisfying the above theorem.

9.1.2. Antisymmetrized Products of Appropriate States of H (K)
A

and a Given State of H (M)
A

In this subsection we consider a fixed state |P (M)(1,..., M)P of H (M)
A

and an arbitrary state |F (K)(M+1,..., N)P of VPK+ . We take the direct
product of the two and we totally antisymmetrize it, i.e., we consider the
non-normalized state

|k̃ (N)(1,..., N)P=PA[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P]

=
1
N!
A[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P] (9.16)

where the linear operator PA=
1
N!A is the projection operator on the sub-

manifold H(N)
A of H (1) é · · · éH (1).

To evaluate its norm as well as to prove a theorem which will be useful
in what follows, it is convenient to resort to a simple trick by dividing the
permutations of the N particles implied by the symbol A in the above
equation, into two families F and G, where F contains all the permuta-
tions which exchange the first M and/or the second K variables among
themselves, while G contains only permutations which exchange at least
one variable (1,..., M) with the remaining ones. It holds :

A — 5C
F

(−1)f F+C
G

(−1)g G6 (9.17)

f and g being the parity of the corresponding permutations.
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Note that, since

F[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P]

=(−1)f [|P (M)(1,..., M)P é |F (K)(M+1,..., N)P] (9.18)

we have

C
F

(−1)f F[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P]

=C
F

[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P]

=M! K! [|P (M)(1,..., M)P é |F (K)(M+1,..., N)P] (9.19)

Before going on we remark that if |q (K)P belongs to VPK+ one has

Oq (K)(M+1,..., N)| C
G

(−1)g G |P (M)(1,..., M)P |F (K)(M+1,..., N)P=0
(9.20)

where zero denotes the function of the variables (1,..., M) which vanishes
almost everywhere. In fact any individual term of the sum over G has at
least one of the variables from M+1 to N which belongs to the state
|P (M)P and, as such, it involves single particle state indices confined to the
set D. Since the same variable belongs to the state |q (K)P, and therefore it is
associated to single particle states whose indices belong to D+ , the integra-
tion over such a variable gives the result zero.

Coming back to our unnormalized state (9.16), taking into account
that P2A=PA, we have

Ok̃ (N) | k̃ (N)P

=
1
N!

OP (M)(1,..., M) F (K)(M+1,..., N)|

×5C
F

(−1)f F+C
G

(−1)g G6 |P (M)(1,..., M) F (K)(M+1,..., N)P

=
1
N!

C
F

OP (M)(1,..., M) F (K)(M+1,..., N) |P (M)(1,..., M) F (K)(M+1,..., N)P

=
K!M!
N!

(9.21)
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In deriving the above equation we have taken into account the fact that,
since |F (K)(M+1,..., N)P ¥ VPK+ , the sum over G does not contribute, in
accordance with (9.20). The correctly normalized state we are interested in
is then

|k (N)(1,..., N)P==1N
K
2 PA[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P]

(9.22)

Having identified the closed linear manifold VPK+ of H (K)
A we consider now

a complete orthonormal set {|G (K)+ i (M+1,..., N)P} which spans such a
manifold. In terms of these states and of the state |P (M)(1,..., M)P we build
up the orthonormal set {|w (N)+ i (1,..., N)P} of states of H(N)

A according to:

|w (N)+ i (1,..., N)P —=1N
K
2 PA[|P (M)(1,..., M)P é |G (K)+ i (M+1,..., N)P]

(9.23)

We already know that such states are normalized, while their orthogonality
is easily proved by taking into account that P2A=PA, and Eqs. (9.17)
and (9.20).

There follows that the operators |w (N)+ i POw (N)+ i | are a set of orthogonal
projection operators and, consequently, the operator

EP(N)A + =C
i
|w (N)+ i POw (N)+ i | (9.24)

is also a projection operator of H (N)
A .

9.1.3. Some Useful Technical Details about the Formal Procedure
of the Previous Subsections

The identification of the ‘‘one-particle orthogonal’’ linear manifolds
VPM and VPK+ has been made starting from the consideration of a precise
state |P (M)P of H (M)

A . However, since we will be interested in states like
(9.22) which are obtained by antisymmetrizing a product of a state |P (M)P
and a state |F (K)P which are ‘‘one-particle orthogonal,’’ we could have
followed the opposite line of approach, by assigning the prominent role to
the state |F (K)P. In doing this we would have been led to identify two ‘‘one-
particle orthogonal’’ linear manifolds VFK and VFM+ , which differ, in
general, from those mentioned above.

Note, however, that just as |P (M)P ¥ VPM and |F (K)P ¥ VPK+ , it also
happens that |P (M)P ¥ VFM+ and |F (K)P ¥ VFK.
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The simplest example of the above situation is represented, in the case
of two identical fermions, by the state:

|k(1, 2)P=
1

`2
[|L(1)P |C(2)P−|C(1)P |L(2)P] (9.25)

with OL(i) |C(i)P=0. In such a case, if we start with the state |LP, the
manifold VL1+ is the one spanned by |CP and by an orthonormal set of
states |G+ iP which spans the manifold orthogonal to both |CP and |LP. If
we identify the manifolds by the corresponding projection operators, we
have:

VL1. P=|LPOL|

VL1+ . P=|CPOC|+C
i
|G+ iPOG+ i |

(9.26)

On the contrary, if we choose the state |CP to set up our procedure, we
would end up with the two manifolds:

VC1. P=|CPOC|

VC1+ . P=|LPOL|+C
i
|G+ iPOG+ i |

(9.27)

It goes without saying that in such a case one could consider two other one
particle orthogonal manifoldsW andW+ as follows:

W. P=|LPOL|+C
i ¥ d
|G+ iPOG+ i |

W+ . P=|CPOC|+C
i ¥ d −
|G+ iPOG+ i |

(9.28)

d and dŒ representing a partition of the positive integers.
It is very easy to understand the formal reasons of the just considered

situation. When dealing with a system of N fermions, we started with the
state |P (M)P, and we have identified the single particle submanifold VP1+

characterized by the orthonormal set |fjP, j ¥ D+ . We have then defined D

as the complement of D+ and we have shown that the Fourier expansion of
|P (M)P involves all single particle states |fiP for which i ¥ D. We have also
taken into account a state |F (K)P ¥ VPK+ . We remark now that there is no
reason why the Fourier expansion of |F (K)P should involve all states for
which j ¥ D+ . Suppose it actually involves only a subset DF of D+ . If this is
the case, we are naturally led to consider the following eigenmanifolds:
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• the manifold V (M)D which is spanned by the basis vectors

1

`M!
A{|fi1P,..., |fiMP}, i1,..., iM ¥ D (9.29)

• the manifold V (K)DF which is spanned by the basis vectors

1

`K!
A{|fj1P,..., |fjKP}, j1,..., jK ¥ DF … D+ (9.30)

• the manifolds V (M)D − and V (K)D − which are spanned by the basis vectors

1

`M!
A{|fr1P,..., |frMP}, r1,..., rM ¥ DŒ (9.31)

and

1

`K!
A{|fs1P,..., |fsKP}, s1,..., sK ¥ DŒ (9.32)

respectively, where DŒ contains all single particle indices which do not
belong to D or DF.

Despite the fact that there seems to be a certain degree of freedom in
choosing a couple of ‘‘one-particle orthogonal’’ manifolds, the appropria-
teness of the above remarks will appear clearly when, in Section 9.2.4, we
will discuss the physical meaning of our requirements concerning complete
sets of properties and/or the non-entangled character of appropriate
subsets of a system of identical constituents. We will in fact show that the
one particle orthogonality is a necessary condition in order that one can do
the physics within each such manifold by disregarding the other.

9.2. Entanglement and Properties for Systems of N Identical

Fermions

Bearing in mind the mathematical formalism we have introduced in
the previous sections, we can now formalize the idea of non-entangled
states of a system of identical fermions.

9.2.1. States of Many Identical Fermions and Their Properties

We begin by characterizing in a mathematically precise way the fact
that a subgroup, or, better a ‘‘subquaset’’ ofM of the N identical fermions
possesses a complete set of properties:
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Definition 9.1. Given a system S (N) of N identical fermions in a
pure state |k (N)P of H (N)

A we will claim that two subsets of cardinality M
and K (N=M+K), respectively, both possess a complete set of properties
iff there exists a state |P (M)P of H (M)

A such that

Ok (N)| EP(N)A + (1,..., N) |k
(N)P=1 (9.33)

where EP(N)A + (1,..., N)=;s |w
(N)
+ s (N)POw (N)+ s | is the projection operator of

H (N)
A given by Eq. (9.24), which is uniquely identified, according to the

previous procedure, by the assignment of the state |P (M)P.

Condition (9.33) assures that, given the state |k (N)P of N identical
fermions and the specific single particle basis {|fkP} of Eq. (9.10), the
probability of finding ‘‘a group’’ of M particles described by the state
|P (M)P and the remaining ones in single particle states which do not appear
in the Fourier decomposition of |P (M)P, equals one. In the next subsections
we will discuss the precise physical reasons for which, when the above
conditions are satisfied, it is correct to claim that ‘‘there is a set of M fer-
mions which is non entangled with the remaining set of K particles.’’

Here we note the significant fact that EP(N)A + (1,..., N) turns out to be
the restriction to the totally antisymmetric manifold of N indistinguish-
able fermions of the projection operator E(1,..., N)=S̃[|P (M)POP (M)| é
;i |G

(K)
+ i POG (K)+ i |], where we have indicated with S̃ the sum of the (NK)=(

N
M)

terms in which one or more of the first M indices are exchanged with the
remaining ones.

In fact, by resorting to the projection operator PA=
1
N!A onto the

manifold H(N)
A , we have:

PAE(1,..., N) PA=
1
(N!)2

A 5S̃ 5|P(1 · · ·M)POP(1 · · ·M)|

éC
i
|G+ i(M+1· · ·N)POG+ i(M+1· · ·N)|66 A

=
1
(N!)2
1N
K
2 C
i
A[|P(1 · · ·M)P |G+ i(M+1· · ·N)P]

×[OP(1 · · ·M)| OG+ i(M+1· · ·N)|] A

=C
i
|w (N)+ i POw (N)+ i | — E

P(N)
A + (9.34)

where the coefficient (NK) corresponds to the number of permutations
produced by the operator S̃, while the last line follows directly from the
definition of the states (9.23).
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In the special case of two identical fermions, we notice that the operator
EP(2)A + =;i |w

(2)
+ iPOw(2)+ i | reduces to the one of Eq. (7.3) with P(1) é P(2)=0,

which we have used to define the properties of two fermion states.
In fact, if we denote with P the projection operator of H (1) which

projects onto the one-dimensional manifold spanned by the state |P (1)P, it
is easy to see that EP(2)A + turns out to be:

EP(2)A + =C
i
|w (2)+ iPOw (2)+ i |

=1
2P

(1) é (I (2)−P (2))+12 (I
(1)−P (1)) é P (2)

− 12 C
i
[|G+ i(1)P |P(2)P−|P(1)P |G+ i(2)P] (9.35)

Since it is easy to prove that the last term, when acting on H (2)
A , coincides

with the sum of the first two terms, we have proved that:

EP(2)A + =(I
(1)−P (1)) é P (2)+P(1) é (I (2)−P (2)) (9.36)

Equation (9.36), shows that the general formalism we have developed in
order to deal with the properties of N identical fermions reduces to the one
we have already used in Section 7 when dealing with two identical quantum
constituents of a composite system.

9.2.2. A Relevant Theorem

It is now extremely easy to prove the following theorem which identi-
fies the mathematical properties to be satisfied by a state vector in order
that it describes subsets of identical constituents possessing a complete set
of properties.

Theorem 9.3. A necessary and sufficient condition in order that a
state |k (N)P of the Hilbert space of N identical fermions allows the identifi-
cation of two subsets of cardinality M and K (N=M+K) of particles
which possess a complete set of properties is that |k (N)P be obtained
by antisymmetrizing and normalizing the direct product of two states
|P (M)(1,..., M)P and |F (K)(M+1,..., N)P of H (M)

A and H (K)
A respectively,

where |F (K)(M+1,..., N)P belongs to VPK+ .

Proof. Suppose that:

|k (N)P==1N
K
2 PA[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P] (9.37)
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with |F (K)(M+1,..., N)P ¥ VPK+ . Then one can write:

|F (K)(M+1,..., N)P=C
s
as |G

(K)
+ s (M+1,..., N)P (9.38)

Replacing (9.38) in (9.37) one has:

|k (N)P==1N
K
2 C
s
asPA[|P (M)(1,..., M)P é |G (K)+ s (M+1,..., N)P]

=C
s
as |w

(N)
+ s P (9.39)

There follows:

EP(N)A + |k
(N)P=C

rs
as |w

(N)
+ r POw (N)+ r |w

(N)
+ s P=C

s
as |w

(N)
+ s P=|k

(N)P (9.40)

which implies

Ok (N)| EP(N)A + |k
(N)P=1 (9.41)

Conversely, since EP(N)A + is a projection operator, the condition
Ok (N)| EP(N)A + |k

(N)P=1 implies:

EP(N)A + |k
(N)P=|k (N)P (9.42)

i.e., putting bs=Ow (N)+ s | k
(N)P:

|k (N)P=C
s
|w (N)+ s POw (N)+ s | k

(N)P

==1N
K
2 PA C

s
bs[|P (M)P é |G (K)+ s P]

==1N
K
2 PA 5|P (M)P é C

s
bs |G

(K)
+ s P6

==1N
K
2 PA[|P (M)P é |F (K)P] (9.43)

where |F (K)P=;s bs |G
(K)
+ s P ¥ VPK+ . L
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9.2.3. Non-Entangled Subsets of N Identical Fermions

As we have just shown, the requirement that a ‘‘subset’’ ofM fermions
of a system of N identical fermions in the pure state |k (N)P possesses a
complete set of properties requires that the state vector of the system has
the form (9.37) and this happens iff Eq. (9.33) is satisfied. We now note
that, in the case under consideration, the two ‘‘factors’’ |P (M)P and |F (K)P,
play a perfectly symmetrical role. It follows that it is possible to define a
projection operator EFNA + , which plays precisely the same role as EPNA + and,
correspondingly it allows us to claim that ‘‘a subset of K fermions has the
complete set of properties associated to the pure state |F (K)(M+1,..., N)P.’’

Since, according to Definition 8.1, we have related the possibility of
claiming that the system of N fermions contains two non-entangled ‘‘sub-
sets’’ of cardinality M and K, respectively, to the possibility of attributing
a complete set of properties to the two subsets under examination, the
following theorem has been proved:

Theorem 9.4. Given a system S (N) of N identical fermions in a pure
state |k (N)P of H(N)

A it contains two non-entangled subsets of cardinalityM
and K iff |k (N)P can be written as:

|k (N)P==1N
K
2 PA[|P (M)(1,..., M)P é |F (K)(M+1,..., N)P] (9.44)

where the states |P (M)(1,..., M)P and |F (K)(M+1,..., N)P are ‘‘one-particle
orthogonal’’ among themselves.

9.2.4. The Physical Motivations for the Conditions that a Subset
Be Non-Entangled

In this section we present precise physical arguments which should
clarify the formal constraints we have imposed to claim that a subset of a
set of identical particles is non-entangled with the remaining ones, in spite
of the fact that the whole state satisfies the requirement of being totally
antisymmetric. To this purpose, let us take into account a complete ortho-
normal set of single particle states and let us consider, in strict analogy with
what we have done in Section 9.1.3, two disjoint subsets20 D and Dg. We

20 Note that we do not assume that the union of the states with indices belonging to such
subsets coincides with the complete orthonormal single particle basis. As a clarifying
example one can consider two denumerable set of states spanning the manifold of the
square integrable functions with disjoint supports A and B, respectively, such that A 2 B is
strictly contained in R3.
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consider, as usual, the two closed submanifolds V (M)D and V (K)Dg of H (M)
A and

H (K)
A , respectively, with obvious meaning of the symbols: they are the

manifolds such that the Fourier development of their states involve only
single particle states whose indices belong to D, or to Dg, respectively. In
place of a precise state |P (M)P (as we did up to now), here we consider
arbitrary states of V (M)D and V (K)Dg , and two orthonormal bases {|U (M)j P} and
{|X (K)

l P} spanning such manifolds.
By repeating the calculations of the previous sections, one immediately

proves that, if consideration is given to an arbitrary pair of states |q (M)P
and |y (M)P of V (M)D or to another pair of states |m (K)P and |n (K)P of V (K)Dg , the
following relations hold:

C
l

:5=1N
K
2 Oq (M)| OX (K)

l | PA6 ·5=1
N
K
2 PA |y (M)P |n (K)P6:

2

=|Oq (M) | y (M)P|2

(9.45)

and

C
j

:5=1N
K
2 OU (M)j | Om (K)| PA6 ·5=1

N
K
2 PA |y (M)P |n (K)P6:

2

=|Om (K) | n (K)P|2

(9.46)

These equations show that, provided two one-particle orthogonal mani-
folds V (M)D and V (K)Dg can be identified, and provided the interactions
between the particles determining the subsequent evolution do not alter the
specific features of the state vector, then one can do the physics within each
manifold by disregarding the other one, even though the appropriate anti-
symmetrization requests for the whole set of fermions are respected.21

21 With reference to Eq. (9.45), we stress that the one-particle orthogonality of the states |y (M)P
and |n (K)P, and |q (M)P and |X (K)P as well as the corresponding ones for the states appearing
in Eq. (9.46), is absolutely fundamental—as the reader can check—in order that the (physi-
cally important) equality sign between the expressions at the left and right hand sides of the
equations hold.

These considerations should have made clear the appropriateness of adopt-
ing our criteria (as given in Theorem 9.4) for the attribution of complete
sets of properties associated to |P (M)P and |F (K)P and for the identification
of non-entangled subsets of a system of N identical fermions.

A concluding remark. Obviously, (see also the discussion by A.
Messiah in his book (21)), the most significant instance of the above situation
is the one in which the set of states whose indices belong to D are single
particle states whose wave functions have compact support within a
region A, while those whose indices belong to Dg have support confined to
a region B disjoint from A. In such a case we can claim that ‘‘there are M
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fermions in region A with precise properties,’’ in spite of the fact that the
presence of the remaining identical fermions (confined within a different
region) has been rigorously taken into account.

The particular relevance of the case in which the ‘‘subsets’’ of our
analysis are related to single particle states with disjoint supports, emerges
clearly from the previous considerations. The special situation according to
which we can ‘‘look at a part of the universe’’ disregarding the rest of it
(which however has precise implications for the total state vector) occurs
easily (at least to an extremely high degree of accuracy—see the next
section) when the manifolds V (M)D and V (K)Dg correspond precisely to single
particle states with compact disjoint supports.

With reference to this fact, we point out that in this paper we have
dealt with the general case and we have avoided to put, from the very
beginning, limitations to the specific structure of our one-particle orthog-
onal manifolds, to stick as far as possible to a rigorous and general math-
ematical treatment. However, we can now call attention to the fact that if
the identification of the two considered manifolds would be related, e.g., to
the indices D and Dg corresponding to single particle states having different
parity under space reflections, then, even though for a N-particle state like
`(NK) PA |P

(M)P |F (K)P (which is built in terms of a pair of one-particle
orthogonal states |P (M)P and |F (K)P) we can attribute complete sets of
properties to the appropriate subsets of cardinality M and K, almost every
interaction between the particles will destroy the ‘‘factorizability’’ as well as
the one-particle orthogonality of the factors of the complete state.

Once more, as we have repeatedly outlined in this paper, particle posi-
tions play an absolutely prominent role in making physically interesting
and meaningful our analysis.

The above considerations should have clarified our line of thought in
approaching the problem of identifying non-entangled states in the case of
systems with identical constituents.

9.2.5. An Important Specification about Non-Entangled States

Our definition of non-entangled subsets of systems of identical fer-
mions might be considered not fully appropriate by some readers, due to
the fact that it does not imply the local factorizability of position proba-
bilities.22 To discuss this question it seems useful to limit, for the moment,

22 We are grateful to the refereee for having called our attention on the fact that this point
deserves a detailed analysis.

our considerations to the system of two identical fermions and to derive
two simple theorems. We consider a single particle complete othonormal
set {|jiP} and two disjoint subsets D and Dg of the ensemble N of the
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natural numbers. We do not require that the union of D and Dg exhausts
the whole N. We denote as VD and VDg the two orthogonal submanifolds of
the single particle Hilbert space H spanned by the vectors {|jiP}, with
i ¥ D, and {|jjP}, with j ¥ Dg, respectively. We consider two orthogonal
projection operators Pd and Qdg onto two submanifolds Vd ı VD and
Vdg ı VDg of H, and, in terms of them we define the following projection
operator:

E(1, 2)=Pd(1) é Qdg(2)+Qdg(1) é Pd(2) (9.47)

of the Hilbert space of the system of two identical fermions. Finally we
take into account a non-entangled (according to our definition) state vector
of our two identical fermions:

|k(1, 2)P=
1

`2
[|P(1)P |F(2)P−|F(1)P |P(2)] (9.48)

where |PP belongs to VD and |FP belongs to VDg. With these premises we
can now formulate the following theorem:

Theorem 9.5. Given the state (9.48), the joint probability distribu-
tion of finding one particle in a state belonging to Vd and one particle in a
state belonging to Vdg factorizes into the product of the probabilities of the
single events.

Proof. The proof is straightforward. According to our analysis of
Section 7.1 it amounts simply to verify that:

Ok(1, 2)| E(1, 2) |k(1, 2)P=OP| Pd |PP ·OF| Qdg |FP (9.49)

where

OP| Pd |PP=Ok(1, 2)| Pd(1) é (I(2)−Pd(2))

+(I(1)−Pd(1)) é Pd(2) |k(1, 2)P (9.50)

OF| Qdg |FP=Ok(1, 2)| Qdg(1) é (I(2)−Qdg(2))

+(I(1)−Qdg(1)) é Qdg(2) |k(1, 2)P (9.51)

and this completes the proof. L

We need also another elementary theorem. Suppose we consider
observables A and B which have non vanishing matrix elements between
states belonging to VD and VDg. Then we have the following theorem:
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Theorem 9.6. For pairs of observables connecting the two mani-
folds VD and VDg, in general, the joint probability of getting a pair of eigen-
values when the composite system is in state (9.48) does not factorize into
the product of the probabilities of the single events.

Proof. This theorem is easily proved by considering the two elemen-
tary operators A=|jrPOjs |+|jsPOjr | and B=i[|jrPOjs |− |jsPOjr |] with
r ¥ D and s ¥ Dg. The eigenvectors of these operators are

A=±1 S
1

`2
[|jrP±|jsP] B=±1 S

1

`2
[|jrP±i |jsP] (9.52)

Then it is trivial to see that if |PP contains the state |jrP and |FP contains
the state |jsP:

Pr(A=1&B=−1) ] Pr(A=1) ·Pr(B=−1) (9.53)

with obvious meaning of the symbols. L

With these premises we can now be more precise about our line of
thought. As we have discussed in great detail before, our definition of a
non-entangled state of two identical particles uniquely identifies two
orthogonal submanifolds VD and VDg. Given a pair of observables A and B
commuting with PD and with QDg respectively, let us consider their restric-
tions Ã and B̃ to VD and VDg. The first of the theorems we have proved
implies then the factorizability of the joint probabilities of getting a pair of
eigenvalues of Ã and B̃. The second one shows that for operators connect-
ing states of VD and VDg this does not hold, in general.

Now we can tackle the problem of the local factorizability of proba-
bilities. To fully understand it, it is sufficient to identify VD and VDg with the
Hilbert spaces spanned by vectors which, in the configuration representa-
tion, have compact support in the two disjoint subsets D and Dg of the real
axis. In this case, if we identify Vd and Vdg with the Hilbert spaces of the
square integrable functions of compact support in the indicated intervals,
our theorem tells us that the joint probability of finding one particle in the
space interval d and one in dg factorizes provided the wave function is non-
entangled, with factors having the appropriate supports, one in D and one
in Dg.

This makes precise that the non-entangled state (9.48) exhibits, in the
considered case, local factorizability of position probabilities. It has
however to be remarked that, according to our second theorem, if consid-
eration is given to two observables A and B such that their matrix elements
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Ox| A |xgP and Ox| B |xgP do not vanish for x ¥ D and xg ¥ Dg, then, in
general, in the considered state:

Pr(A=ai&B=bj) ] Pr(A=ai) ·Pr(B=bj) (9.54)

i.e., the joint probability of getting the outcomes ai and bj for such
observables does not factorize. The situation should now be clear. The non-
entangled character of the state |k(1, 2)P identifies precise manifolds and,
correspondingly, observables commuting with the projection operators
onto them. The restrictions of such observables to the considered manifolds
identify the relevant properties related to the state. It is just the joint prob-
abilities referring to such properties which factorize. We perfectly agree
that the physically really interesting case is the one in which the manifolds
VD and VDg, as well as the submanifolds Vd and Vdg, are associated to
disjoint sets of position variables, in which case local factorizability holds
in the situation described above. Actually as we have already done and as
we are going to discuss in the next section we are inclined to attach a par-
ticularly relevant role to this case since we are convinced that position
variables must be endowed with a priviliged status. However, from the
point of view we have taken in this paper, which makes systematic refer-
ence to the problem of the legitimacy of attributing properties to the con-
stituents, it seems perfectly appropriate and correct to adopt the definition
we have chosen to identify non-entangled states of identical particles. In the
general case, the probabilities which factorize are related to observables
different from positions, and as such they are not local.

A final remark. All previous considerations can be easily generalized
to non-entangled states of N identical fermions. In such a case, if one deals
with the typical non-entangled state:

|k(1,..., N)P==1N
K
2 PA[|P(1,..., M)P |F(M+1,..., N)P] (9.55)

and if one considers two arbitrary projection operators P(1,..., M) and
Q(M+1,..., N), which project onto the two one-particle orthogonal sub-
manifolds V (M)D and V (K)Dg containing |PP and |FP, respectively, one can
easily prove that

Ok| PAS̃[P(1,..., M) é Q(M+1,..., N)] PA |kP

=Ok| PAS̃[P(1,..., M) é I(M+1,..., N)] PA |kP

·Ok| PAS̃[I(1,..., M) é Q(M+1,..., N)] PA |kP (9.56)
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which is the obvious generalization of our previous result (9.49) for two
identical fermions. Moreover, a similar argument can be developed for the
boson case.

9.3. Some Useful Remarks Concerning Almost Perfect

Non-Entanglement

Having made precise the idea of a ‘‘group of particles’’ of a system of
identical particles being non-entangled with the remaining ones (or, more
precisely, the idea of complete set of properties objectively associated to the
‘‘subquasets’’ of a ‘‘quaset’’ of N identical particles) we can reconsider the
situation we have envisaged at the beginning of this section, i.e., the case in
which a Helium atom is here (at the origin O of our reference frame) and a
Lithium atom is there, let us say at a distance d from O. Our worries con-
cerned the legitimacy of claiming ‘‘there is a Helium atom at the origin’’ or
‘‘there is a Lithium atom at a distance d from the origin’’ when one takes
into account, e.g., the identity of the electrons of the two systems which
requires the state vector to be totally skew-symmetric under their exchange.
To discuss the conceptually relevant aspects of this problem we will
confine, for simplicity, our considerations only to the electrons which are
involved, disregarding the nuclei of the atoms—and the necessary anti-
symmetrization concerning the protons and the neutrons.

The puzzling question we have to face is the following: since the elec-
trons are indistinguishable, in which sense can we state that two of them
are around the origin (to make the Helium atom which is there) and three
at a distance d? And then, in which sense can one claim that ‘‘there is a
Helium atom at the origin?’’ The answer, as we have stressed in this
section, can be only given by paying the due attention to the total state
vector of the complete system ‘‘Helium+Lithium.’’ Such a state vector has
the form:

|k (5)P3 G[|Helium(2) hereP é |Lithium(3) thereP] (9.57)

And now we are in trouble. The factors |Helium(2) hereP and |Lithium(3)

thereP of the state inside the square brackets at the r.h.s. do not satisfy
exactly our fundamental request of being one-particle orthogonal.

However, we can explicitly evaluate integrals like the one of Eq. (9.15),
which, when they vanish, make legitimate precise claims concerning the
objective properties of the considered subquasets. We notice that the
modulus of the relevant integral is of the order of the overlap integrals of
the electronic wave functions. Since they decrease exponentially outside a
region of 10−8 cm from the corresponding nuclei, we immediately see that,
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for a distance between the two nuclei of the order of 1 cm, the relevant
integral turns out to have a value of the order of 10−10

16
. It is easy to con-

vince oneself that this figure represents also the probability that, if one has
an apparatus devised to check whether there is an Helium atom around the
origin, it will not detect such an atom.

So, our claim ‘‘there is a Helium atom around the origin’’ is, strictly
speaking, not perfectly correct but has only an approximate validity.
However, as appropriately pointed out by the authors of ref. 18, ‘‘all
assertions of physics have that kind of approximation. When we state that the
heat passes spontaneously only from a hotter to a cooler body in contact, we
really mean that in a real case it is extremely probable that it should do so.’’

Concluding, in the considered case the formal conditions which are
necessary for attributing consistently objective properties to ‘‘a group of
particles’’ are satisfied to an extremely high degree of accuracy so that,
precisely in the same way as we consider valid all the (unavoidably
approximate) assertions about physical systems, we can confidently say
that ‘‘there is a Helium atom here and a Lithium atom there.’’

A concluding remark is appropriate. The analysis we have performed
has played an important role in making clear what are the formal features
which make legitimate, in a rigorous or in an extremely well approximate
way, to consider, in the case of a system of identical constituents, two
subgroups of them as disentangled from each other and as possessing
objectively precise properties.

To fully appreciate the real relevance of our considerations we invite
the reader to consider the case in which, in place of the state (9.57) one is
dealing with a state like:

|k (5)P3 G [|Helium(2) hereP é |Lithium(3) thereP

+|Lithium(3) hereP é |Helium(2) thereP] (9.58)

which is perfectly possible and relatively easy to prepare, and which would
not make legitimate, in any way whatsoever, to make claims about what
is here being a Helium rather than a Lithium atom. We stress that the
embarrassment with a state like the one we have just considered does not
arise from the fact that the strict conditions which would make our claims
absolutely rigorous are not exactly satisfied, but from the fact that the state
of the whole system is genuinely entangled due to the fact that it is
obtained by antisymmetrizing a nonfactorized state. Even if the states of
the Helium and Lithium atoms would satisfy our strict requirements of one-
particle orthogonality, no objective property referring to the region around
the origin (and the one at a distance d from it) could be identified and
claimed to be possessed.

Entanglement and Properties of Composite Quantum Systems 109



Finally, we mention that, in the case of the state (9.57), the approxi-
mation of disregarding the overlap of the electronic (or nucleonic) wave
functions associated to the two atoms, is practically equivalent to ignoring
the request of totally antisymmetrizing the state vector under the exchange
of the electrons of the Helium and Lithium atoms.23 Once more the legiti-

23 What we have in mind should become clear if one makes reference, e.g., to the evaluation of
exchange effects using perturbation theory. In such a case, for example, the matrix elements
of the Hamiltonian between states which are products of states with disjoint supports
vanish, so that one can avoid performing the antisymmetrization procedure.

macy of doing so can be explicitly evaluated by taking into account to
which extent one can disregard (de facto they are absolutely negligible) the
exchange effects. However, giving up the antisymmetrization request
amounts to considering the electrons of the Helium as distinguishable from
those of the Lithium atom. If one makes this step, then one sees that the
conclusions we have drawn concerning systems of identical constituents
reduce to those we have derived for the case in which they are distinguish-
able.

9.4. Completely Non-Entangled Indistinguishable Fermions

As in the case of N distinguishable particles, once one has identified
two ‘‘groups’’ of particles which are non-entangled with each other, one
can raise the question of whether also the‘‘members’’ of each subset can be
subdivided into non-entangled subsubsets. We will limit ourselves to give
the definition and the associated theorem (which is easily proved) which
characterizes the states corresponding to completely non-entangled identi-
cal fermions.

Definition 9.2. The pure state |k(1,..., N)P ¥H(N)
A describing a

system of N indistinguishable fermion particles, is completely non-
entangled if there exist N mutually orthogonal one-dimensional projection
operators Pi, i=1· · ·N, such that:

Tr (1+· · ·+N)[Ei |k(1,..., N)POk(1,..., N)|]=1 -i=1· · ·N (9.59)

where Ei=I(1) é · · · é I (N)−(I (1)−P (1)i ) é · · · é (I (N)−P (N)i ).

The quantity Tr (1+· · ·+N)[Ei |k (N)POk (N)|], where the projection opera-
tors Ei are totally symmetric under the exchange of two arbitrary particles,
gives the probability of finding one fermion in a well definite one-dimen-
sional manifold, the one onto which Pi projects. Therefore, in a completely
non-entangled physical system composed of identical constituents,
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Eqs. (9.59) guarantee that all the N particles possess a complete set of
objective properties.

The content of the following theorem, which is a generalization of the
one we have already proved in the simpler case of two particles, shows the
relevance of Definition 9.2:

Theorem 9.7. A system S=S1+·· ·+SN of N identical half-
integer spin particles described by the pure state |k(1,..., N)P is completely
non-entangled iff it can be obtained by antisymmetrizing a completely fac-
torized state. Note that the factors can be assumed to be orthogonal among
themselves without any loss of generality.

10. IDENTICAL BOSONS

We have now to face the problems of property attribution and entan-
glement in the case of a system of N indistinguishable bosons. The main
difference with respect to the case of identical fermion systems derives from
the fact that, when one splits the set of the N particles into two or more
subsets which have a complete set of properties, it may happen that two
such subsets containing the same number L of particles are associated to
the same state |C (L)P. Alternatively, as we will see, the various subsets must
be associated to states (which may very well contain a different number of
particles) which are one-particle orthogonal among themselves in the
precise sense defined in Section 9.1.1. These are the only two cases which
can give rise to disentangled subsets of the whole set of particles.

For simplicity, we will confine our considerations to the possible
occurrence of only two disentangled subsets (we shall suggest subsequently
how one has to proceed in the general case) and we will distinguish the
cases of one-particle orthogonal and identical factors of the factorized state
we have to symmetrize.

Taking into account the analysis of Section 7.1.2 concerning the two-
boson case, it is easy to see that the two above considered instances (i.e.,
the appearance of identical or one-particle orthogonal state vectors) cannot
occur together if one requires the system to contain two subgroups pos-
sessing simultaneously a complete set of properties, i.e., which are non-
entangled with each other.

10.1. Boson Subsets Corresponding to Different Properties

We recall that, in accordance with our Definition 8.1, in order to be
allowed to speak of two non-entangled subsets of particles it must be pos-
sible to attach a complete set of properties to both subsets. As the reader
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can easily understand, the case we are interested in here—i.e., the one in
which we exclude that the subsets have precisely the same properties—can
be dealt with by repeating step by step the analysis we have performed for
the fermion case. Accordingly, we will limit ourselves to recall the appro-
priate definitions and theorems, with the due changes, without going
through detailed arguments and proofs.

In analogy with the fermion case, we will denote as H (R)
S the Hilbert

space of the state vectors which are totally symmetric for the exchange of
all variables of R identical bosons. Moreover we define the projection
operator PS on the totally symmetric submanifold H (N)

S of H (N) as
PS=

1
N! S, where S is the linear operator which acts in the following way on

a N-single particle basis:

S{|ji1 (1)P · · · |jiN (N)P}=C
P
P{|ji1 (1)P · · · |jiN (N)P} (10.1)

where the sum is extended to all permutations P of the variables (1,..., N).
With reference to a state of N=L+J such bosons, we consider a state

|C (L)(1,..., L)P describing L such particles and, by the procedure of Sec-
tion 9.1.1, we define the single particle manifolds VC1 and VC1+ as well as
the manifolds VCL and VCJ+ , with obvious meaning of the symbols. The
very procedure to identify such manifolds guarantees that |C (L)(1,..., L)P
¥ VCL and that the closed linear manifolds VCL and VCJ+ are one-particle
orthogonal.

It is easy to see that the properly normalized state vector |k(N)(1,..., N)P
obtained by symmetrizing the direct product of |C (L)(1,..., L)P and an
arbitrary vector |L (J)(1,..., J)P ¥ VCJ+ is:

|k (N)(1,..., N)P==1N
L
2 PS[|C (L)(1,..., L) P é |L (J)(L+1,..., N)P]

(10.2)

Once again, having identified the closed linear manifold VCJ+ of H (J)
S , we

can consider a complete orthonormal set spanning such a manifold, namely
the set {|W(J)

+ j(L+1,..., N)P}, and build the orthonormal set {|E(N)+ j (1,..., N)P}
of states of H (N)

S :

|E (N)+ j (1,..., N)P==1
N
L
2 PS[|C (L)(1,...L)P é |W (J)

+ j(L+1,..., N)P] (10.3)
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These states, which are the equivalent for the boson case of the ones
we have introduced in Eq. (9.23), are properly normalized and mutually
orthogonal and therefore the operator

EC(N)S + =C
j
|E (N)+ j (1,..., N)POE (N)+ j (1,..., N)| (10.4)

is a projection operator of H (N)
S .

It is now possible to characterize in a mathematically definite way, as
we did when dealing with identical fermions, the fact that each of two
subgroups of bosons possesses a complete set of different properties.

Definition 10.1. Given a system S (N) of N identical bosons in a pure
state |k (N)P of H (N)

S we will claim that two subsets of cardinality L and J
(N=L+J), respectively, both possess a complete set of different proper-
ties iff there exists a state |C (L)P of H(L)

S such that

Ok (N)| EC(N)S + (1,..., N) |k
(N)P=1 (10.5)

where EP(N)S + (1,..., N)=;r |E
(N)
+ r POE (N)+ r | is the projection operator of H (N)

S

given by Eq. (10.4), which is uniquely identified, according to the previous
procedure, by the assignment of the state |C (L)P.

From this definition one can easily derive the following remarkable
results, whose proofs can be obtained by the same arguments leading to
Theorems 9.3 and 9.4:

Theorem 10.1. A necessary and sufficient condition in order that
a state |k (N)P of the Hilbert space of N identical bosons allows the iden-
tification of two subsets of cardinality L and J (N=L+J) of particles
which possess a complete set of different properties is that |k (N)P be
obtained by symmetrizing and normalizing the direct product of two states
|C (L)(1,..., L)P and |D (J)(L+1,..., N)P of H (L)

S and H (J)
S respectively, where

|D (J)(L+1,..., N)P belongs to VCL+ .

Theorem 10.2. Given a system S (N) of N identical bosons in a pure
state |k (N)P of H (N)

S a sufficient condition in order that it contains two non-
entangled subsets of cardinality L and J is that |k (N)P can be written as:

|k (N)P==1N
L
2 PS[|C (L)(1,..., L)P é |D (J)(L+1,..., N)P] (10.6)

Entanglement and Properties of Composite Quantum Systems 113



where the states |C (L)(1,..., L)P and |D (J)(L+1,..., N)P are ‘‘one-particle
orthogonal’’ among themselves.

The previous definition and theorems yield clear and mathematically
precise conditions under which it is possible to consider two subquasets of
bosons as disentangled from each other. The condition of ‘‘one-particle
orthogonality’’ is necessary in order to be allowed (i) to attribute a set of
complete and different properties to each subgroup of the whole system
and (ii) to extend the arguments of Section 9.2.4, concerning the possibility
of doing physics within each manifold by disregarding the other one, also to
the case of bosons. Thus, we have identified a first class of non-entangled
boson states as the ones which are obtained by symmetrizing direct pro-
ducts of two ‘‘one-particle orthogonal’’ vectors.

10.2. Boson Subsets Corresponding to Identical Properties

Let us pass now to characterize the second class of N-boson states
which, according to our general Definition 8.1, can be considered as non-
entangled. In this case there is no need at all to resort to any complicated
procedure to identify ‘‘one-particle orthogonal’’ manifolds; we can limit
ourselves to claim that if the state |k(1,..., N)P—N-even—is obtained by
symmetrizing and normalizing a product state of two identical factors,
i.e., if |k(1,..., N)P3 S[|C(1,..., N/2)P |C(N/2+1,..., N)P], then it can be
considered for sure as non-entangled. It is in fact apparent that we can
attribute to both subgroups of N/2 particles the complete set of properties
associated to the state |CP.

Though mathematically clear, this situation may appear a bit prob-
lematic if one tries to develop considerations analogous to those of
Section 9.2.4. In fact it is straightforward to show that now it is no longer
possible to perform a physical measurement on a subgroup of N/2 par-
ticles without affecting, to some extent, the remaining ones. In this peculiar
situation, in spite of the possibility of attributing a complete set of proper-
ties to both the component subgroups, it is practically impossible to devise
any measurement process on one subgroup whose results will not depend
on the presence of the other. We could say that there are correlations of a
certain type which are intrinsically due to the fact that the identical par-
ticles are described by precisely the same state.

However, this fact does not give rise to any serious problem for two
reasons. First of all, the ‘‘unavoidable correlations’’ we have just men-
tioned are related more to the fact that the subgroups are ‘‘truly identical
—i.e., in precisely the same state’’ than to the Hilbert space description
of the system. In a sense these effects are analogous to those one meets,
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even within a classical picture, when one compares the implications of
Maxwell–Boltzmann statistics and those of Bose–Einstein statistics. More-
over, and much more important, it has to be stressed that since, as repea-
tedly remarked, the most interesting features of the entanglement and/or
non-entanglement of identical constituents emerge in the case in which one
has two subgroups confined within different spatial regions, the case of the
product of two identical states has not a specific physical relevance.

In order to illustrate better this situation, let us resort to a simple
physical example and let us consider a couple of spin zero particles
described by the following state vector:

|k(1, 2)P=|jD(1)P |jD(2)P (10.7)

where the normalized wave function associated to the ket |jDP is defined
on the (one-dimensional) real axis and has the following form:

jD(x)=Ox | jDP=˛
1

`D
x ¥ D

0 x ¨ D

(10.8)

It is our purpose to show that every conceivable position measurement we
perform on a particle of the system, will unavoidably alter the whole wave
function and therefore will modify the probabilistic predictions of sub-
sequent measurements. Let us ask, for example, which is the probability of
finding one of the two particles inside the closed interval D1 … D once pre-
cisely one particle has been found in a previous measurement to lie in the
disjoint interval D2 … D, and let us compare this result with the probability
of finding precisely one particle within D1 when no previous measurement
has been performed. If we suppose to have found precisely one particle
within D2, the collapsed wave function is obtained by applying to the state
(10.7) the usual operator PD2 é (I−PD2 )+(I−PD2 ) é PD2 , where PD2 projects
onto the interval D2, and then normalizing it:

|k̃(1, 2)P=
1

= 2D2
D
11−D2

D
2
[|j̃D2P |jDP+|jDP |j̃D2P−2 |j̃D2P |j̃D2P]

(10.9)

In the previous equation the wave function j̃D2 (x) associated to the non-
normalized state vector |j̃D2P has the following form:
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j̃D2 (x)=Ox | j̃D2P=˛
1

`D
x ¥ D2

0 x ¨ D2

(10.10)

In such a case the desired probability of finding the other particle within
the interval D1 … D is easily obtained as:

Ok̃(1, 2)| PD1 é (I−PD1 )+(I−PD1 ) é PD1 |k̃(1, 2)P=
D1

(D−D2)
(10.11)

On the contrary the probability of finding precisely one particle inside the
interval D1 when no previous measurement has been performed, is:

Ok(1, 2)| PD1 é (I−PD1 )+(I−PD1 ) é PD1 |k(1, 2)P=
2D1
D
11−D1

D
2

(10.12)

Since the two probabilities are clearly not equal for arbitrary choices of the
disjoint intervals D1 and D2, one could be tempted to consider this fact as a
manifestation of the outcome dependence which is typical of all entangled
states. However, this argument is not correct since the strict and unavoid-
able correlations between position measurements, are simply due to the fact
that the quantum particles are truly identical, and there is no need to
invoke a special role played by their quantum nature. It is in fact possible
to build up a very simple classical model, consisting of two particles which
cannot be experimentally distinguished, which displays exactly the same
correlated properties of our quantum pair.

In fact, let us consider a one-dimensional interval of length D and a
couple of indistinguishable classical particles; assuming that each particle
can, in principle, be found with the same probability in any finite subin-
terval of D of a given amplitude, we evaluate the probability distributions
corresponding to the above quantum example, once we have randomly put
the particles inside the interval. We find (not surprisingly) that the mere
fact of having found precisely one particle inside, for example, the
interval D2, modifies the probability of finding the other particle within D1,
and this is due to the fact that the first information restricts the set of all
possible ways of distributing the two particles within the interval. More-
over, it is easy to show that all the probability distributions of arbitrary
position measurements coincide with those holding for the quantum case of
two bosons in the same state.
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Therefore, it is possible to interpret the peculiar correlations arising
when dealing with bosons in the same state, as classical correlations which
are simply due to the truly indistinguishable nature of the particles involved,
the same situation occurring for a set of classical identical particles.

10.3. Some Remarks about Property Attribution

Contrary to what happens in the case of fermions, in which the possi-
bility of attributing a complete set of properties to one subgroup automat-
ically implies that also the remaining subgroup has a complete set of prop-
erties, for systems of identical bosons this is no longer true. This parallels
strictly the situation we have already discussed in the case of two identical
bosons when we have considered the state (7.14) obtained by symmetrizing
the product of two non-orthogonal factors, and this is due to the fact that
‘‘one particle orthogonality,’’ and not the standard orthogonality of the
factors, is necessary to claim that both subgroups have different properties.
To clarify once more this point, let us consider a state obtained by symme-
trizing and normalizing two states which are not ‘‘one-particle orthogonal’’
and which contain an equal number of bosons:

|k (N)(1,..., N)P=NS[|C (N/2)(1,..., N/2)P |L (N/2)(N/2+1,..., N)P]
(10.13)

If one evaluates the scalar products of such a state with, e.g., the state
NCS[|C (N/2)(1,..., N/2)P|C (N/2)(N/2+1,..., N)P], or with NLS[|L (N/2)(1,...,
N/2)P |L (N/2)(N/2+1,..., N)P], one sees that such scalar products are, in
general, not equal to zero even if the states |CP and |LP are orthogonal in
the usual sense. This is sufficient to conclude that in a state like (10.13),
in which |LP and |CP are not one-particle orthogonal, there is a nonzero
probability of finding ‘‘two subgroups’’ in the same state. This in turn
obviously implies that one cannot state that there are two subgroups pos-
sessing complete and different properties, while, in turn, the very fact that
|CN/2(N/2+1,..., N)P ] |LN/2(N/2+1,..., N)P does not permit the claim
that the two subgroups possess the same properties.

11. A COMMENT ON ENTANGLED ENTANGLEMENT

In this section we want to spend few words on a question addressed
in ref. 22, i.e., whether the entanglement itself should be considered as an
objective property of a given physical system. Since we have made sharply
precise the distinction between entangled and non-entangled states, our
answer is, obviously, affirmative. On the contrary, in the above paper the
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authors suggest that the non-separability property displayed by some
quantum states ‘‘is not independent of the measurement context,’’ concluding
that the entanglement is a contextual property. We would like, first of all,
to stress that the real problem addressed by the authors is completely dif-
ferent from the one they seem to be interested in discussing, and that the
conclusions they reach are absolutely obvious and rather trivial. What they
actually discuss is whether subjecting a constituent of a many (\ 3)-particle
system to a measurement process one can leave the remaining particles in
an entangled or non-entangled state, depending on the measurement one
chooses to perform.

Their argument goes as follows. They consider a quantum state
describing a three spin-1/2 particles, like the one considered by Greenberger,
Horne and Zeilinger (23):

|kP=
1

`2
[|z‘P1 |z‘P2 |z‘P3+|zaP1 |zaP2 |zaP3] (11.1)

which is undoubtedly entangled. Then they remark that it is possible to
leave the two non-measured particles in factorized or entangled states,
depending on the different measurements which one chooses to perform on
the third particle (the choice of measurement corresponding to what they
call the measurement context). We remark that by measuring the spin of the
third particle along the z-direction one leaves the remaining particles in a
factorized state, while every other conceivable spin measurement leads to
an entangled state. However, this conclusion has nothing to do with the
objective entanglement of the initial state. It is absolutely obvious that the
first two particles are sometimes left in an entangled state and sometimes
not: this is a trivial consequence of the reduction postulate of standard
quantum mechanics.

Actually, one can easily devise even more general (but always trivial)
situations in which the fact that two particles of a three-particle system are
entangled or not after the third has been subjected to a measurement may
depend, not only on the measurement one performs, but even on the
outcome one obtains. To this purpose let us consider the following
entangled state of three distinguishable spin one-half particles:

|kP=
1

`3
[|z‘P1 |z‘P2 |waP3+(|z‘P1 |zaP2+|zaP1 |z‘P2)|wbP3] (11.2)

where |waP and |wbP are two eigenvectors belonging to different eigen-
values of an operator associated to an observable W (3) of the third particle
(which here, for simplicity we consider as distinguishable from the other
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two). It is evident that a measurement process of W (3) performed on the
third particle, produces a final state for the first two particles whose
entanglement depends strictly on the measurement outcome: if the result
W=wa is obtained, particles 1 and 2 are described by a factorized state,
while in case of W=wb the two particles are left in an entangled state. Once
more, this is due to the external intervention on the system and to wave
function collapse, and therefore there is no need at all to attribute a special
role to the measurement context to characterize the separability properties
of a quantum system. The state after the measurement is, as always, com-
pletely different from the one before it.

PART IV: NON PURE STATES

This section is devoted to discuss briefly some problems which are
relevant in connection with the locality issue and the validity of Bell’s
inequality. We will limit our considerations to the case of distinguishable
particles.

12. CORRELATIONS AND BELL’S INEQUALITY

Let us consider, for simplicity, a system of two distinguishable par-
ticles in a non-pure state which is a statistical mixture, with weights pj, of
factorized states |jj(1)P |hj(2)P. As implied by Theorem 4.3, for each of the
states appearing in the mixture the expectation value of the direct product
of two observables A(1) of H1 and B(2) of H2 also factorizes:

Ojj(1)| Ohj(2)| A(1) é B(2) |jj(1)P |hj(2)P

=Ojj(1)| A(1) |jj(1)P ·Ohj(2)| B(2) |hj(2)P (12.1)

It follows that the expectation value of A(1) é B(2) in the non-pure state
can be written as:

OA(1) é B(2)P=C
j
pjAjBj, pi > 0, C

i
pi=1 (12.2)

where we have put Aj=Ojj(1)| A(1) |jj(1)P and Bj=Ohj(2)| B(2) |hj(2)P.
We can now compare the expression (12.2) with the one giving the

expectation value of the direct product of two observables in a hidden
variable theory:

OA(1) é B(2)P=F dl r(l) A(l) B(l), r(l) > 0, F dl r(l)=1
(12.3)
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It is obvious that the two expressions (12.2) and (12.3) have exactly the same
formal structure. Just as one can prove, starting from Eq. (12.3) and assum-
ing that |A(l)| and |B(l)| are less than or equal to one, that Bell’s inequality
is satisfied, one can do the same starting from Eq. (12.2). The conclusion
should be obvious, and it has been stressed for the first time in ref. 24: a non-
pure state which is a statistical mixture of factorized states cannot lead to a
violation of Bell’s inequality.24 The converse is obviously not true, once more

24 We note that A. Shimony et al. (25) have claimed that no one had proved explicitly this fact
before 1989 when it has been proved by Werner. (26) This is incorrect as one can check by
reading ref. 24.

for the simple reason that the correspondence between statistical ensembles
and statistical operators is infinitely many to one. It could therefore easily
happen that a non-pure state describing a statistical mixture of non-fac-
torized (i.e., entangled) states is associated to the same statistical operator of
a statistical mixture of factorized states. Since all expectation values depend
only on the statistical operator, also in this last case one is lead to the same
conclusion, i.e., that no violation of Bell’s inequality can occur.

These considerations lead us to consider the relevant question of
looking for mixtures which do not lead to violation of Bell’s inequality,
without worrying about their specific composition in pure subensembles.
The appropriate formal approach is the following. Let us consider a given
statistical ensemble E of a system of two particles and its statistical opera-
tor rE(1, 2) and let us define an equivalence relation between ensembles in
the following way:

[Eg — E]Z [rEg(1, 2)=rE(1, 2)] (12.4)

Our problem can now be reformulated in the following way: given a certain
statistical operator r(1, 2) and considering the equivalence class of the
statistical ensembles having it as its statistical operator, does this class
contain at least one ensemble which is a statistical union of subensembles
each of which is associated to a pure and factorized state? It is obvious that
if one can answer in the affirmative to such a question, then one can
guarantee that the considered statistical operator cannot lead to a violation
of Bell’s inequality. Some relevant investigations in this direction have
appeared recently (27–29) but the general problem is extremely difficult and
far from having found a satisfactory solution.

13. CONCLUSIONS

In this paper we have reviewed the peculiar features displayed by
entangled quantum states, by analyzing separately the cases of two or
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many distinguishable or identical quantum systems. We have given the
appropriate definitions for the various cases of interest and we have
derived the necessary and sufficient conditions which must be satisfied in
order that a system can be considered entangled or non-entangled. The
analysis has been quite exhaustive and, we hope, it has clarified some of the
subtle questions about this extremely relevant trait of quantum mechanics.

ACKNOWLEDGMENTS

We would like to thank Prof. D. Dürr, Prof. G. Calucci, and Dr.
D. Mauro for many helpful discussions as well as the referee of the Journal
of Statistical Physics for useful remarks and stimulating suggestions. Work
supported in part by Istituto Nazionale di Fisica Nucleare, Sezione di
Trieste, Italy.

REFERENCES

1. E. Schrödinger, Naturwissenschaften 23:807 (1935); English translation in Proc. Am.
Philos. Soc. 124:323 (1980).

2. D. Dürr, S. Goldstein, and N.Zanghı́, J. Stat. Phys. 63:843 (1992).
3. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47:777 (1935).
4. P. Eberhard, Nuovo Cimento B 46:392 (1978).
5. G. C. Ghirardi and T. Weber, Lettere Nuovo Cimento 26:599 (1979).
6. G. C. Ghirardi, A. Rimini, and T. Weber, Lettere Nuovo Cimento 27:293 (1980).
7. G. C. Ghirardi, R. Grassi, A. Rimini, and T. Weber, Europhys. Lett. 6:95 (1988).
8. P. Suppes and M. Zanotti, in Logic and Probability in Quantum Mechanics, P. Suppes, ed.

(Reidel, Dordrecht, 1976), p. 445.
9. B. van Fraassen, Synthese 52:25 (1982).

10. J. Jarrett, Noûs 18:569 (1984).
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